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A wide range of stressful experiences can influence human

decision making in complex ways beyond the simple

predictions of a fight-or-flight model. Recent advances may

provide insight into this complicated interaction, potentially in

directions that could result in translational applications. Early

research suggests that stress exposure influences basic neural

circuits involved in reward processing and learning, while also

biasing decisions toward habit and modulating our propensity

to engage in risk-taking. That said, a substantial array of

theoretical and methodological considerations in research on

the topic challenge strong cross study comparisons necessary

for the field to move forward. In this review we examine the

multifaceted stress construct in the context of human decision

making, emphasizing stress’ effect on valuation, learning, and

risk-taking.
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Express to anyone that you are ‘stressed’ and you are
likely to receive some commiseration, a perception of
understanding that belies a more complex reality. As a
construct stress is amorphous, easily identified but diffi-
cult to define, its nature varying by circumstance and
individual. Similarly nebulous can be a decision maker’s
grasp of cognitive computations involved in large and
small daily life choices, so often made under stressful
conditions. Therefore, it should come as no surprise that
exploring the relationship between the two poses a par-
ticularly thorny methodological puzzle. The emergence
of the discipline of neuroeconomics [1], coupled with
knowledge gained by decades of research on the influ-
ence of stress on learning and memory (e.g., [2]), have

promoted a surge of attention to this very question. While
significant advances have been made, the growing liter-
ature on stress and decision making (DM) in humans is far
from internally consistent. To move toward reconcilia-
tion, and in a translational direction, it is important to
understand methodological differences that challenge
cross-study comparisons. In this review, we explore stress
effects on DM-related processes focusing on valuation,
learning, and risk-taking.

The stress construct
Stress has classically been defined as ‘the non-specific
response of the body to any demand for change’, an
adaptive homeostatic function [3]. It is associated with
parallel activation of two biological systems: the quick-
acting sympathetic-adrenal-medullary (SAM) axis, and
the slow-acting hypothalamic-pituitary-adrenal (HPA)
axis [4]. Sympathetic nervous system reactivity and asso-
ciated catecholamine (e.g., nor/adrenaline) release pro-
mote peripheral excitation that quickly returns to
baseline (i.e., the ‘fight-or-flight’ response [5]). Concur-
rent brainstem signals of homeostatic disruption trigger
HPA activation and corticosteroid release at a slower
pace. Yet, this characteristic description does not convey
wide-ranging individual differences based on stressor
used (e.g., physiological or psychological) or stressor
timing (e.g., when applied and exposure duration), and
associated central/neuroendocrine dynamics. Across stud-
ies, variability in stress operationalization along these
lines has contributed to inconsistencies in the stress-
DM literature.

Differences in stressor timing can be conceptualized as an
interaction between (at least) three factors: stress-to-task
latency, stressor duration, and exposure across the life-
span. Given the different timelines of HPA/SAM reactiv-
ity, carefully calibrating stress-to-task latency is critical to
link experimental outcomes with SAM and/or HPA phys-
iology. For instance, a few minutes’ difference in latency
may be sufficient to influence stress effects on risk-taking
[6]. Similarly, stressors that are repeated or occur long-
term (chronic) but not those of short-term duration
(acute) have been associated with structural changes in
DM-related brain regions in rats [7��] and humans [8].
Stress effects on DM may also differ based on lifespan
phase of the individual [9]. Adolescents exposed to early
life stress, for example, are susceptible to changes in
affective/motivational circuits typically involved in DM
(e.g., amygdala, prefrontal cortex, and ventral striatum
[10��]).
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Stress-to-task latency is also an issue with respect to
cellular and neuroendocrine dynamics. Much stress and
DM research has considered only slower genomic effects
of cortisol after reaching peak levels, leading to general
adoption of designs involving long stress-to-task latency.
Yet, both fast-acting catecholaminergic and cortisol-based
rapid non-genomic effects can influence brain function in
DM-critical regions (e.g., prefrontal cortex, amygdala
[11]). It is noteworthy that as a class corticosteroids
include not only glucocorticoids (e.g., cortisol) but also
oft-overlooked mineralocorticoids (e.g., aldosterone),
which have been linked to optimization of explicit mem-
ory retrieval [12]. While stress-DM research is only
beginning to explore the latter, evidence suggests
that mineralocorticoids play a central role in rapid non-
genomic stress effects recently gaining attention in the
literature [13].

Another source of variability across studies of stress and
DM is the type of stressor used. These can generally be
classified as systemic (i.e., physiological homeostatic dis-
ruptions like heat, pain, and cold), processive (i.e., psy-
chological or psychosocial), or systemic/processive
hybrids. In terms of HPA/SAM activation, systemic
stressors are brainstem mediated whereas processive
stressors require limbic system engagement (i.e., subjec-
tive identification of stimulus as threat [14]). A related
point is that certain stressors, such as those involving
social-evaluation or uncontrollability, tend to yield great-
er peripheral cortisol [15��]. This highlights the impor-
tance not only of stressor used but also individual
differences in subjective appraisals of stressors as contrib-
uting factors to variability across findings.

Beyond methodological issues related to stress operatio-
nalization, differential stress effects on specific DM com-
putations must be considered. While important and
complex frameworks of DM computations have been
proposed (e.g., [16]), here we will focus on a simplified
subset. Specifically, valuation (of anticipated or received
decision outcomes), learning (updating value based on
experience), and risk-taking. Stress exposure may modu-
late any/all of these processes, a proposal that emerging
research supports at this early stage; however, it is not
always easy to identify the locus of stress’ effect.

Stress and valuation: reward-related
processing
A central axiom of DM research rests on the principle that
people act to approach rewards and avoid punishments in
their environment [17]. Thus, valuation of the appetitive/
aversive nature of anticipated (or received) decision out-
comes is a likely candidate for stress’ modulation. Indeed,
stress-altered sensitivity to rewarding/punishing out-
comes (e.g., primary, food; secondary, money) appears
to play a role in development of some pathologies includ-
ing binge eating [18], pathological gambling [19], and

anhedonia in depression [20,21]. Given emerging evi-
dence that valuation is a locus of stress’ influence on
DM, can a synthesis of research outcomes be reached
accounting for methodological differences?

Initial evidence supports the idea that acute stress
reduces sensitivity to rewards, including behavioral
[22,23] and neuroimaging studies highlighting an influ-
ence in regions including orbitofrontal cortex (OFC),
medial prefrontal cortex (mPFC), amygdala and striatum
[24–26,27��]. Consistent with this, there have been
demonstrations that chronic (i.e., cumulative early life)
stress is associated with blunted ventral striatal reward
responses in adulthood [28]. Given methodological dif-
ferences in stress-to-task latency and decision process
(e.g., valuation at anticipation/receipt) across studies,
however, it is still early to claim that stress universally
blunts reward valuation.

Though reductions in reward-related responses have
been observed using different stressors during anticipa-
tion [24,25] and receipt [26,27��], there are some dis-
agreements. For example, one of these studies employed
a methodology that permitted exploration of stress effects
as a function of decision process [27��]. Enhanced
responses associated with reward anticipation were ob-
served under stress, in contrast with prior studies [24,25].
A critical methodological difference is that studies report-
ing increases at anticipation used a short stress-to-task
latency (i.e., immediately before task performance
[26,27��]), compared to studies employing a longer laten-
cy which led to decreases [24,25]. Thus, cross study
comparisons show some consistency in results even with
different stressors applied, but are not conclusive given
differing cellular and neuroendocrine dynamics associat-
ed with stress-to-task latency.

Other recent behavioral research utilizing reinforcement-
learning paradigms has demonstrated systemic and pro-
cessive acute stress effects seemingly opposed to blunted
reward valuation. In these studies learning is operationa-
lized as improved choice after repeated positive/negative
feedback, and was impaired for decisions based on nega-
tive outcome feedback but enhanced for positive (i.e.,
rewarding) feedback [29,30]. Thus, a reasonable hypoth-
esis is that ‘stress triggers increased reward salience’
(STARS [31]). The noteworthy STARS model is consis-
tent with research linking stress and cortisol to increases
in extracellular dopamine in rats in mPFC, dorsal and
ventral striatum [32,33], replicated in the human PET
literature [34,35]. This begs the question, however, of
how reports of blunted valuation for rewards but not
punishments can be reconciled with STARS during rein-
forcement-learning [36].

Beyond potential difficulty in directly comparing fMRI
BOLD with PET/animal neurochemical results, it is
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plausible that different processes were examined. For
example, in reinforcement-learning increased reward ‘sa-
lience’ may represent enhanced retrieval of representa-
tions of previously learned reward associations rather than
enhanced valuation of rewards per se. Consistent with this
interpretation, in one of the previously discussed learning
studies stress-blunted reward sensitivity was observed in
early trials despite ultimately enhanced reward-based
performance [29]. Another possibility is that stress influ-
ences different components of a reward outcome (e.g., the
affective value, but not the information it conveys [37]) or
impacts learning via reward but not punishment [38]. It is
clear moving forward that novel experimental designs
could focus on careful manipulation of such factors to
dissociate stress effects on the intertwined processes of
valuation and learning.

Stress and learning: the role of habit
A logical next question relates to how stress might influ-
ence expression of previously learned outcomes. Re-
search across disciplines supports the idea that DM
processes can be placed on a spectrum ranging from (I)
habitual, stimulus-bound, automatic, and less effortful, to
(II) goal-directed, flexible, controlled, more effortful and
resource-dependent [39–42]. As learning proceeds over
time to establish strong and ingrained prior expectations
informing DM, might stress exposure bias choice toward
those expectations and away from novel but relevant
information (i.e., a goal-directed to habit-based shift)?
Consider, for example, how habitual an elevator button
press to one’s floor at work becomes over time. If one day
circumstances require a different floor be chosen after a
stressful experience, is a person more likely to choose the
goal-directed or habitual button?

Chronic stress may support a shift to habitual responding
while promoting an insensitivity to novel goal-directed
contingencies. For instance, rats under chronic stress
operantly conditioned to respond for two food rewards
tend to perseverate in responses associated with the
devalued stimulus (classic devaluation studies would
suggest a reduction [7��]). Structural neural changes in
such animals are also observed, with atrophy in mPFC
and dorsomedial striatum (associated with goal-directed
DM [43]) but hypertrophy in the dorsolateral DM (asso-
ciated with habit-based DM [44]). Taken together, these
data suggest that a goal-directed to habit-based shift
could become a persistent change under chronic stress.

A nascent human literature involving acute stress using a
similar devaluation approach based on primary reinforcers
converges with the above [45,46]. Additionally, an analo-
gous fMRI study involving exogenous administration of
hydrocortisone and the b-adrenergic antagonist yohimbe
(to mimic combined HPA/SAM engagement) yielded
similar outcomes [47��]. There, BOLD responses in
OFC and mPFC for devalued outcomes were reduced

and a perseverative DM pattern manifested. This implies
a key interaction between DM and memory processes,
that synergistic HPA/SAM engagement may promote a
goal-oriented to habit-based shift [48]. It is notable that
mineralocorticoids may also play a critical role [49].

Potential clues about underlying mechanisms can be
drawn from well-developed human and animal literatures
on stress, learning, andmemory. It has been proposed that
under stress combined glucocorticoid/noradrenergic ac-
tivity promotes a mode of hippocampal memory forma-
tion by which stress-associated experiences are strongly
consolidated and ancillary systems brought offline [50],
resulting in a shift in neural resources away from execu-
tive toward salience networks that enhance vigilance and
fear [51]. This converges with a rich literature on stress-
related impairment of prefrontal-based working memory
linked to excess catecholamine release [52].

In fact, greater working memory capacity serves as a
protective factor against stress-related impairments in
model-based learning (a goal-directed form of reinforce-
ment learning [53��]). Critically, stress-influenced brain
regions discussed earlier in valuation are consistent with
prefrontal and dorsomedial striatum mediated goal-direct-
ed processing [54]. It is plausible that valuation impair-
ments may play a role in goal-directed/habit-based shifts
under stress (e.g., insensitivity to devaluation). That said,
timing of stress exposure is likely to influence which
system informs DMmost strongly [48], as it is yet unclear
how differing stress-to-task latencies may promote or
impair shifts on a goal-directed/habit-based spectrum.

Stress and risk-taking
Another prominent emphasis in stress-DM investigations
is risk-taking, a critical issue given its prevalence in
stressful real-life contexts including medicine [55], psy-
chopathology [56], and financial investing [57]. Decision-
makers’ likelihood to engage in risk varies greatly based
on multiple decision-inherent features including uncer-
tainty (i.e., degree of information informing outcome
predictability [58]), framing of a decision (as a potential
gain or loss [59]), and valuations of outcome valence,
magnitude, and probability of receipt (also combined to
compute expected utility [60]). As such, decisions involv-
ing risk-taking rely in part on stress-susceptible valuation/
learning processes and brain regions already discussed
[61–63]. Though, little research has examined the neural
substrates of stress in this context necessitating focus on a
growing behavioral literature.

Acute stress effects on risk-taking have yielded mixed
results in decision making tasks under risk characterized
by explicit probabilistic information (e.g., 50% chance of
$100). Multiple studies have reported risk-taking
increases when decisions are framed as potential financial
gains [64��,65,66], though longer stress-to-task latencies
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have recently been shown to be a factor with respect to
decisions under risk (i.e., greater risk taking immediately
after stress but reduced risk-taking 45 min later [67]).
Other studies separating decisions under risk by domain
(gain/loss trials) are inconsistent. For instance, acute
systemic stress applied in that context has led to an
exaggerated reflection effect (i.e., decreased risk-taking
for gains but increases for losses) interpreted as a stress-
related shift toward habit-based DM [68]. More recent
processive stress studies also manipulating decision frame
yield different outcomes: reductions (rather than
increases) in loss risk-taking and no effects during gains
[69,70]. Beyond a systemic/processive stressor difference,
other design elements may partially explain the discrep-
ancy in results. In the former [68], decisions were limited
to two domains and equal expected values, a fast-paced
time-limited choice period, and a large number of trials.
In the latter two [69,70], decision options were more
varied (i.e., gain/loss/mixed and several options), time
to choose unlimited, and fewer trials offered, all which
reduced repetition and increased variability of choices.
Thus, one possibility is that a fast-paced and repetitive
methodology promoted sensitivity to a stress-related hab-
it-based shift in the first case whereas a slower-pace, less
repetition, and varied expected values in the second two
may have promoted a more deliberative strategy and
enhanced salience of potential losses.

Compared to decisions based on explicit probabilistic
information, in decision making tasks under ambiguity,
where such information is not available (e.g., x% of $100)
results are different but more consistent. Specifically,
multiple studies have reported reduced risk-taking in
stressed females but increases in males. This holds true
both whether risk-taking is financially disadvantageous
(i.e., Iowa Gambling Task [71,72]) or advantageous (Bal-
loon Analgoue Risk Task [73,74]). While one study
reported no stress/sex effects at all [66], early evidence
appears to support the proposal that in decisions made
under ambiguity acute stress increases risk-taking in
males while decreasing it in females. A potential expla-
nation for this is that females may be more ambiguity
averse in some DM contexts [75], which could be exac-
erbated under stress.

While these early studies indicate that acute stress can
influence risk-taking, its effect varies. When decisions
provide little/no probabilistic information (i.e., ambigu-
ous), stressed females may be more risk-averse and males
more risk-seeking. With more explicit information to
inform choice, stress effects appear to differ based on
methodological elements related to stress and decision
operationalization. A recent meta-analysis offers insights
along these lines, highlighting that first, stress may pro-
mote increased risk-taking/reward-seeking even when
this leads to disadvantageous outcomes, and second,
processive stressors yield more reliably stress effects than

systemic ones (potentially due to enhanced HPA reactiv-
ity [76]). Notably, no effects of moderating factors such as
sex, age, neuroendocrine response, and stress-to-task
latency were observed. This is surprising given growing
research supporting the importance of such moderators,
for example stress-related risk-taking increases in adoles-
cents [77,78]. Though it is premature to draw strong
conclusions given small sample size, likely without ade-
quate representation of moderating factors and great
methodological variability across included studies (e.g.,
uncertainty level), the meta-analysis represents an impor-
tant step forward and helps shape impending research.

Future directions
Despite some lack of internal consistency given a wide
range of between-study methodological differences, the
human stress and DM literature has made great advances
over the last few years. For instance, there are consistent
observations indicating that stress exposure reduces re-
ward valuation upon receipt of an outcome yet questions
remain at anticipation due to differences in stress-to-task
latency. A growing consensus supports a propensity to shift
toward habit-based from goal-directed systems under
stress, potentially associated with facilitation of reward-
based reinforcement-learning — but also an insensitivity
to updated environmental contingencies that can be mal-
adaptive in some contexts. At choice, stress can exert an
influence atmultiple levels ranging from altered valuation/
feedback processing and automaticity effects expanded on
in this review, to increased impulsivity in decision imple-
mentation. While some studies report stress-related mod-
ulation of risk-taking and/or disadvantageous choices,
drawing strong conclusions would be premature as this
literature in particular is subject to great variability in
methodology and outcome measures.

Yet, there is room for growth and exciting future direc-
tions. In stress operationalization, fruitful future avenues
include targeted manipulations of timing and stressor
type as previously discussed. Gaining a greater under-
standing of stress’ cellular and neuroendocrine influences
on DM, so strongly influenced by timing, will significant-
ly improve our ability to make cross-study comparisons.
For example, though some studies discussed here linked
reported effects to cortisol reactivity many did not. Ex-
ploration of neuroendocrine dynamics little-examined
under stress will be critical to gain new insights, including
rapid nongenomic versus slow genomic cortisol effects
and the role of mineralocorticoids. Also of note are im-
portant quasi-independent factors recent research indi-
cates interact with stress such as sex [73], age [9], other
stress-influenced neuroendocrine factors (e.g., oxytocin
and testosterone [79]), and genetic variants influencing
catecholaminergic and executive function [80].

Future studies will also benefit greatly from targeted
manipulations of DM computation components such as
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valuation (e.g., beyond expected value) and learning (e.g.,
stress effects at different stages of learning). One direction
may be carefully decomposing the influence of stress on
various DM components, as in a recent study controlling
for risk attitudes, loss aversion, and choice consistency
which reported no acute stress effects (suggesting stress
might influence other processes that contribute to DM
[81]). It is also plausible that acute stress affects subcom-
ponents of receipt of reward-related information that may
exert distinct influences on valuation and learning (e.g.,
affect versus quantitative information). Along these lines,
early stress-DM investigations involving decisions with a
more complicated structure accounting for factors like
intertemporal discounting [82] and loss aversion [81] raise
interesting questions as to the locus of stress’ influence
evenwithin a specific computation (e.g., probability versus
magnitude, etc.). Finally, there are exciting extensions
with respect to decision making in the social context. For
example, prosocial behavior is influenced by stress expo-
sure, with increases in self-interested decisions during
social exchange games against strangers [83–85] but gen-
erosity toward close others when decisions and stress
exposure were close in time [86].

Looking ahead, stress-DM research has great potential to
contribute to science in both the basic and applied senses.
To reach that point, however, it will be critical to develop
a common methodological framework for stress research
implementation and reporting. The benefits of moving in
a translational direction to inform clinical work and ame-
liorate everyday lives cannot be overstated. For instance,
individuals may have difficulties using emotion regula-
tion strategies under stress [87] which could lead to
deficits in decision making such as reduced self-control
[88]. Increasing positive emotion [89] or fostering a per-
ception of control in the face of stress could serve as
alternative coping mechanisms with potential conse-
quences for decision making, such as promoting persis-
tence in goal pursuit [90]. Future advances along these
lines will move the field in an exciting and valuable
applied direction.
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