

Hands-On	Blockchain	with	Hyperledger

	

	

Building	decentralized	applications	with	Hyperledger	Fabric	and	Composer

	

	

	

	

	

Nitin	Gaur
Luc	Desrosiers
Venkatraman	Ramakrishna
Petr	Novotny
Dr.	Salman	A.	Baset
Anthony	O'Dowd

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Hands-On	Blockchain	with
Hyperledger
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	authors,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any
damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Sunith	shetty
Acquisition	Editor:	Tushar	Gupta
Content	Development	Editor:	Tejas	Limkar
Technical	Editor:	Dharmendra	Yadav
Copy	Editors:	Safis	Editing
Project	Coordinator:	Manthan	Patel
Proofreader:	Safis	Editing
Indexer:	Priyanka	Dhadke
Graphics:	Tania	Dutta
Production	Coordinator:	Deepika	Naik

First	published:	June	2018

Production	reference:	1190618

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78899-452-1

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Foreword
In	my	role	as	the	chair	of	the	Hyperledger	Technical	Steering	Committee,	I've
come	to	realize	the	great	divide	between	the	enormous	hype	surrounding
blockchain	and	the	depth	of	understanding	of	how	blockchain	technology	works,
where	the	technology	is	on	the	maturity	curve,	and	how	it	might	be	leveraged	in
the	context	of	the	enterprise.

Most	of	the	hype	relates	to	the	cryptocurrency	aspects	of	public,	permission-less
blockchain—ICOs	as	a	substitute	for	more	traditional	IPOs,	and	the	potential	for
disrupting	traditional	systems	of	banking,	insurance,	securities,	and	so	on.	It	is
the	potential	for	disruption	and	the	asymmetric	profits	that	disruption	might
yield	that	have	driven	many	to	explore	how	blockchain	might	be	used	to	one
company's	advantage	over	the	rest	of	a	given	domain.	However,	what	many	are
discovering	is	that	blockchain	is	a	team	sport,	and	for	blockchain	to	be
successful	in	an	enterprise,	it	demands	a	degree	of	industry	collaboration	not
seen	before.

The	authors	of	this	book	take	you	beyond	the	hype.	They	lay	a	solid	foundation
for	understanding	the	state	of	the	technology	landscape—including	active	and
incubating	projects	under	development	at	Hyperledger.	They	provide	you	with	a
framework	for	choosing	the	right	technology	platform,	designing	your	solution,
and	integration	with	existing	systems.	And	they	explain	the	various	governance
models	for	establishing	and	operating	a	blockchain	business	network.

If	you	are	an	enterprise	architect	or	developer	tasked	with	developing	a
blockchain	solution	for	your	enterprise	or	industry,	this	book	is	a	must-read.

	

Cheers,

	

Christopher	Ferris
IBM	Distinguished	Engineer,	CTO	Open	Technology

IBM	Digital	Business	Group,	Open	Technologies

Contributors

About	the	authors
Nitin	Gaur,	as	the	director	of	IBM's	Blockchain	Labs,	is	responsible	for
instituting	a	body	of	knowledge	and	organizational	understanding	around
blockchain	technology	and	industry-specific	applications.	Tenacious	and
customer	focused,	he	is	known	for	his	ability	to	analyze	opportunities	and	create
technologies	that	align	with	operational	needs,	catapult	profitability,	and
dramatically	improve	customer	experience.	He	is	also	an	IBM	Distinguished
Engineer.	

Luc	Desrosiers	is	an	IBM-certified	IT	architect	with	20+	years	of	experience.
Throughout	his	career,	he	has	taken	on	different	roles:	developer,	consultant,	and
pre-sales	architect.	He	recently	moved	from	Canada	to	the	UK	to	work	in	a	great
lab:	IBM	Hursley.	This	is	where	he	had	the	opportunity	to	join	the	IBM
Blockchain	team.	He	is	now	working	with	clients	across	multiple	industries	to
help	them	explore	how	blockchain	technologies	can	enable	transformative	uses
and	solutions.

	

Venkatraman	Ramakrishna	is	an	IBM	researcher	with	10	years	of	experience.
Following	a	BTech	from	IIT	Kharagpur	and	PhD	from	UCLA,	he	worked	in	the
Bing	infrastructure	team	in	Microsoft,	building	reliable	application	deployment
software.	At	IBM	Research,	he	worked	in	mobile	computing	and	security	before
joining	the	Blockchain	team.	He	has	developed	applications	for	trade	and
regulation,	and	is	now	working	on	improving	the	performance	and	privacy-
preserving	characteristics	of	the	Hyperledger	platform.

Petr	Novotny	is	a	research	scientist	at	IBM	Research,	with	15+	years	of
experience	in	engineering	and	research	of	software	systems.	He	received	an	MSc
from	University	College	London	and	PhD	from	Imperial	College	London,	where
he	was	also	a	post-doctoral	research	associate.	He	was	a	visiting	scientist	at	the
U.S.	Army	Research	Lab.	At	IBM,	he	works	on	innovations	of	blockchain
technologies	and	leads	the	development	of	blockchain	solutions	and	analytical

tools.

	

Dr.	Salman	A.	Baset	is	the	CTO	of	security	in	IBM	Blockchain	Solutions.	He
oversees	the	security	and	compliance	of	blockchain	solutions	being	built	by	IBM
in	collaboration	with	partners	such	as	Walmart	and	Maersk,	and	interfaces	with
clients	on	blockchain	solutions	and	their	security.	He	drives	the	implementation
of	the	General	Data	Protection	Regulation	for	blockchain-based	solutions.	He
has	also	built	the	identity	management	system,	used	by	Fortune	500	companies
involved	in	global	trade	digitization,	and	IBM	Food	Trust	blockchain	solutions.

	

Anthony	O'Dowd	works	in	IBM's	Blockchain	team.	He	is	based	in	Europe	as
part	of	a	worldwide	team	that	helps	users	build	solutions	that	benefit	from
blockchain	tech.	Anthony	has	a	background	in	middle	and	back	office	systems,
and	has	led	the	development	of	key	IBM	middleware	in	enterprise	messaging
and	integration.	He	likes	to	work	in	different	industries	to	understand	how	they
can	exploit	middleware	to	build	more	efficient,	integrated	business	systems.

	

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

Hands-On	Blockchain	with	Hyperledger

Packt	Upsell

Why	subscribe?

PacktPub.com

Foreword

Contributors

About	the	authors

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Get	in	touch

Reviews

1.	 Blockchain	-	Enterprise	and	Industry	Perspective
Defining	the	terms –	what	is	a	blockchain?

Four	core	building	blocks	of	blockchain	framworks

Additional	capabilities	to	consider

Fundamentals	of	the	secure	transaction	processing	protocol

Where	blockchain	technology	has	been	and	where	it's	going

The	great	divide

An	economic	model	for	blockchain	delivery

Learning	as	we	go

The	promise	of	trust	and	accountability

Industries	putting	blockchain	technology	to	work

Blockchain	in	the	enterprise

What	applications	are	a	good	fit?

How	does	the	enterprise	view	blockchain?

Litmus	testing	to	justify	the	application	of	blockchain	technology

Integrating	a	blockchain	infrastructure	for	the	whole	enterprise

Enterprise	design	principles

Business	drivers	and	evolution

Ensuring	sustainability

The	principles	that	drive	blockchain	adoption

Business	considerations	for	choosing	a	blockchain	framework

Technology	considerations	for	choosing	a	blockchain	framework

Identity	management

Scalability

Enterprise	security

Development	tooling

Crypto-economic	models

Decentralization	with	systemic	governance

Enterprise	support

Use	case-driven	pluggability	choices

Shared	ledger	technology

Consensus

Crypto	algorithms	and	encryption	technology

Use	case-driven	pluggable	choices

Enterprise integration	and	designing	for	extensibility

Other	considerations

Consensus,	ACID	property,	and	CAP

CAP

ACID

Attestation –	SSCs	are	signed	and	encrypted

Use	of	HSMs

Summary

2.	 Exploring	Hyperledger	Fabric
Building on	the	foundations	of	open	computing

Fundamentals	of	the	Hyperledger	project

The	Linux	Foundation

Hyperledger

Open	source	and	open	standards

Hyperledger	frameworks,	tools,	and	building	blocks

Hyperledger	frameworks

Hyperledger	tools

The	building	blocks	of	blockchain	solutions

Hyperledger	Fabric	component	design

Principles	of	Hyperledger	design

CAP	Theorem

Hyperledger	Fabric	reference	architecture

Hyperledger	Fabric	runtime	architecture

Strengths	and	advantages	of	componentized	design

Hyperledger	Fabric –	the	journey	of	a	sample	transaction

Hyperledger	Fabric	explored

Components	in	a	blockchain	network

Developer	interaction

Understanding	governance	in	business	networks	powered	by	blockchain

Governance	structure	and	landscape

Information	technology	governance

Blockchain	network	governance

Business	network	governance

Summary

3.	 Setting	the	Stage	with	a	Business	Scenario
Trading	and	letter	of	credit

The	importance	of	trust	in	facilitating	trade

The	letter	of	credit	process	today

Business	scenario	and	use	case

Overview

Real-world	processes

Simplified	and	modified	processes

Terms	used	in	trade	finance	and	logistics

Shared	process	workflow

Shared	assets	and	data

Participants'	roles	and	capabilities

Benefits	of	blockchain	applications	over	current	real-world	processes

Setting	up	the	development	environment

Designing	a	network

Installing	prerequisites

Forking	and	cloning	the	trade-finance-logistics	repository

Creating	and	running	a	network	configuration

Preparing	the	network

Generating	network	cryptographic	material

Generating	channel	artifacts

Generating	the	configuration	in	one	operation

Composing	a	sample	trade	network

Network	components'	configuration	files

Launching	a	sample	trade	network

Summary

4.	 Designing	a	Data	and	Transaction	Model	with	Golang
Starting	the	chaincode	development

Compiling	and	running	chaincode

Installing	and	instantiating	chaincode

Invoking	chaincode

Creating	a	chaincode

The	chaincode	interface

Setting	up	the	chaincode	file

The	Invoke	method

Access	control

ABAC

Registering	a	user

Enrolling	a	user

Retrieving	user	identities	and	attributes	in	chaincode

Implementing	chaincode	functions

Defining	chaincode	assets

Coding	chaincode	functions

Creating	an	asset

Reading	and	modifying	an	asset

Main	function

Testing	chaincode

SHIM	mocking

Testing	the	Init	method

Testing	the	Invoke	method

Running	tests

Chaincode	design	topics

Composite	keys

Range	queries

State	queries	and	CouchDB

Indexes

ReadSet	and	WriteSet

Multiversion	concurrency	control

Logging	output

Configuration

Logging	API

SHIM	logging	levels

Stdout	and	stderr

Additional	SHIM	API	functions

Summary

5.	 Exposing	Network	Assets	and	Transactions
Building	a	complete	application

The	nature	of	a	Hyperledger	Fabric	application

Application	and	transaction	stages

Application	model	and	architecture

Building	the	application

Middleware –	wrapping	and	driving	the	chaincode

Installation	of	tools	and	dependencies

Prerequisites	for	creating	and	running	the	middleware

Installation	of	dependencies

Creating	and	running	the	middleware

Network	configuration

Endorsement	policy

User	records

Client	registration	and	enrollment

Creating	a	channel

Joining	a	channel

Installation	of	chaincode

Instantiation	of	chaincode

Invoking	the	chaincode

Querying	the	chaincode

Completing	the	loop –	subscribing	to	blockchain	ev

ents

Putting	it	all	together

User	application –	exporting	the	service	and	API

Applications

User	and	session	management

Designing	an	API

Creating	and	launching	a	service

User	and	session	management

Network	administration

Exercising	the	application

User/client	interaction	modes

Testing	the	Middleware	and	Application

Integration	with	existing	systems	and	processes

Design	considerations

Decentralization

Process	alignment

Message	affinity

Service	discovery

Identity	mapping

Integration	design	pattern

Enterprise	system	integration

Integrating	with	an	existing	system	of	record

Integrating	with	an	operational	data	store

Microservice	and	event-driven	architecture

Considering	reliability,	availability,	and	serviceability

Reliability

Availability

Serviceability

Summary

6.	 Business	Networks
A	busy	world	of	purposeful	activity

Why	a	language	for	business	networks?

Defining	business	networks

A	deeper	idea

Introducing	participants

Types	of	participant

Individual participants

Organizational	participants

System	or	device participants

Participants	are	agents

Participants	and	identity

Introducing	assets

Assets	flow	between	participants

Tangible	and	intangible	assets

The	structure	of	assets

Ownership	is	a	special	relationship

Asset	life	cycles

Describing	asset's	life	cycles	in	detail	with	transactions

Introducing	transactions

Change	as	a	fundamental	concept

Transaction	definition	and	instance

Implicit	and	explicit	transactions

The	importance	of	contracts

Signatures

Smart	contracts	for	multi-party	transaction	processing

Digital	transaction	processing

Initiating	transactions

Transaction	history

Transaction	streams

Separating	transactions	into	different	business	networks

Transaction	history	and	asset	states

A	business	network	as	a	history	of	transactions

Regulators	and	business	networks

Discussing	events	from	the	perspective	of	designing	a	business	network	using	Co

mposer

A	universal	concept

Messages	carry	event	notifications

An	example	to	illustrate	event	structure

Events	and	transactions

External	versus	explicit	events

Events	cause	participants	to	act

Loosely	coupled	design

The	utility	of	events

Implementing	a	business	network

The	importance	of	de-materialization

Blockchain	benefits	for	B2B	and	EDI

Participants	that	interact	with	the	blockchain

Accessing	the	business	network	with	APIs

A	3-tier	systems	architecture

Hyperledger	Fabric	and	Hyperledger	Composer

Summary

7.	 A	Business	Network	Example
The	letter	of	credit	sample

Installing	the	sample

Running	the	sample

Step	1 – preparing	to	request	a	letter	of	credit

Step	2 – requesting	a	letter	of	credit

Step	3 – importing	bank	approval

Step	4 –	exporting	bank	approval

Step	5 – letter	received	by	exporter

Step	6 –	shipment

Step	7 – goods	received

Step	8 –	payment

Step	9 – closing	the	letter

Step	10 –	Bob	receives	payment

Recapping	the	process

Analyzing	the	letter	of	credit	process

The	Playground

Viewing	the	business	network

A	description	of	the	business	network

The	participant	descriptions

The	asset	descriptions

The	transaction	descriptions

The	event	descriptions

A	model	of	the	business	network

Namespaces

Enumerations

Asset	definitions

Participant	definitions

Concept	definitions

Transaction	definitions

Event	definitions

Examining	the	live	network

Examining	a	letter	of	credit	instance

Examining	participant	instances

Examining	transaction	instances

Submitting	a	new	transaction	to	the	network

Understanding	how	transactions	are	implemented

Creating	business	network	APIs

SWAGGER	API	definitions

Querying	the	network	using	SWAGGER

Testing	the	network	from	the	command	line

Creating	a	new	letter	using	SWAGGER

Network	cards	and	wallets

Access-control	lists

Summary

8.	 Agility	in	a	Blockchain	Network
Defining	the	promotion	process

Smart	contract	considerations

Integration	layer	considerations

Promotion	process	overview

Configuring	a	continuous	integration	pipeline

Customizing	the	pipeline	process

Local	build

Configuring	Travis	CI

Customizing	the	pipeline	using	.travis.yml

Publishing	our	smart	contract	package

Configuring	your	Git	repository

Setting	the	code	owners	of	our	smart	contract

Sample	content	of	the	CODEOWNERS

Protecting	the	master	branch

Configuring	Git	for	commit	signing	and	validation

Configuring	GPG	on	your	local	workstation

Testing	the	end-to-end	process

Creating	a	new	transaction

Pushing	a	commit	to	the	master	branch	directly

Submitting	a	pull	request	with	an	unsigned	commit

Adding	test	cases

Submitting	a	pull	request	with	a	signed	commit

Adding	the	mergeAssets	unit	test

Releasing	the	new	version

Updating	the	network

Notifying	the	consortium

Upgrading	the	business	network

Downloading	a	new	version

Updating	the	business	network

Summary

9.	 Life	in	a	Blockchain	Network
Modifying	or	upgrading	a	Hyperledger	Fabric	application

Fabric	blockchain	and	application	life	cycle

Channel	configuration	updates

Prerequisites	for	adding	a	new	organization	to	the	network

Generating	network	cryptographic	material

Generating	channel	artifacts

Generating	the	configuration	and	network	components	in	one	operation

Launching	the	network	components	for	the	new	organization

Updating	the	channel	configuration

Adding	the	new	organization	to	the	network

Smart	contract	and	policy	updates

Modification	in	chaincode	logic

Dependency	upgrades	in	chaincode

Ledger	resetting

Endorsement	policy	update

Upgrading	chaincode	and	endorsement	policy	on	the	trade	channel

Platform	upgrades

System	monitoring	and	performance

Measurement	and	analytics

What	should	we	measure	or	understand	in	a	Fabric	application

Blockchain	applications	vis-à-vis	traditional	transaction	proce

ssing	applications

Metrics	for	performance	analysis

Measurement	and	data	collection	in	a	Fabric	application

Collecting	health	and	capacity	information

Profiling	containers	and	applications

Measuring	application	performance

Fabric	engineering	guidelines	for	performance

Platform	performance	characteristics

System	bottlenecks

Configuration	and	tuning

Ledger	data	availability	and	caching

Redundant	committing	peer

Data	caching

Fabric	performance	measurement	and	benchmarking

Summary

10.	 Governance,	Necessary	Evil	of	Regulated	Industries
Decentralization	and	governance

Exploring	the	business	models

Blockchain	benefits

Supply	chain	management

Healthcare

Finance	–	letter	of	credit

From	benefits	to	profits

Network	business	model

Founder-led	network

Consortium-based	network

Community-based	network

Hybrid	models

Joint	venture

New	corporation

Role	of	governance	in	a	business	network

Business	domains	and	processes

Membership	life	cycle

Funding	and	fees

Regulation

Education

Service	life	cycle

Disputes

Governance	structure

Centralized	governance

Strategic	governance

Operational	governance

Tactical	governance

Decentralized	governance

Governance	and	the	IT	solution

Managed	on-boarding

Summary

11.	 Hyperledger	Fabric	Security
Hyperledger	Fabric	design	goals	impacting	security

Hyperledger	Fabric	architecture

Fabric	CA	or	membership	service	provider

Peer

Smart	contract	or	chaincode

Ledger

Private	data

Ordering	service

Network	bootstrap	and	governance	–	the	first	step	towards	security

Creating	the	network

Adding	new	members

Deploying	and	updating	chaincode

Data	model

Strong	identities –	the	key	to	the	security	of	the	Hyperledger	Fabr

ic	network

Bootstrapping	Fabric	CA

Register

Default	Fabric	roles

Enroll

Which	crypto	protocols	are	allowed	in	certificate	signing	requ

ests?

Revoking	identities

Practical	considerations	in	managing	users	in	Fabric	CA

Chaincode	security

How	is	chaincode	shared	with	other	endorsing	peers?

Who	can	install	chaincode?

Chaincode	encryption

Attribute-based	access	control

Pros	and	cons	of	attribute-based	access	control

Common	threats	and	how	Hyperledger	Fabric	mitigates	them

Transaction	privacy	in	Hyperledger	Fabric

Channels

Private	data

Encrypting	transaction	data

Hyperledger	Fabric	and	Quantum	Computing

General	data	protection	regulation	(GDPR)	considerations

Summary

12.	 The	Future	of	Blockchain	and	the	Challenges	Ahead
Summary	of	key	Hyperledger	projects

Hyperledger	framework	–	business	blockchain technology

Hyperledger	tools

Hyperledger	Composer

The	road	ahead	for	Blockchain

Addressing	the	divide	–	the	enterprise	blockchain	and	crypto	asset

-driven	ecosystem

Interoperability	–	understanding	business	service	integration

Scalability	and	economic	viability	of	the	blockchain	solution

Staying	engaged	with	the	Hyperledger	blockchain

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
We	would	like	to	thank	our	readers	in	taking	time	to	consume	our	collective
body	of	work	that	is	representative	of	our	practice,	experience,	and	knowledge
gained	along	the	way.	This	book	was	motivated	by	the	desire	that	we	and	others
have	had	to	contribute	to	the	evolution	of	blockchain	technologies.	We	were	also
challenged	by	a	lack	of	a	comprehensive	guide	that	addresses	myriad
considerations,	including	but	not	limited	to	technology	design	choices,
architecture	choice,	business	consideration,	and	governance	models.	The	authors
of	this	book	represent	a	unique	and	diverse	set	of	skills,	which	should	be	evident
in	addressing	the	depth	of	the	content	with	ease	and	simplicity.	We	have
collectively	focused	on	organization	and	flow	to	ensure	not	only	an	easy-to-
follow	and	natural	flow	but	also	topical	modularity.

The	contents	of	this	book	are	aimed	to	address	a	diverse	audience,	from	business
leaders	to	blockchain	developers	and	anyone	who	would	like	to	learn	from
practitioners'	experience	expressed	in	this	book.	We	believe	that	not	only	will	the
audience	enjoy	and	benefit	personally	and	professionally	from	the	book,	but	also
this	book	will	be	used	as	reference	material,	a	handbook	of	sorts,	and	aid	in
making	informed	design	decisions.	We	encountered	various	challenges	while
writing	this	book,	including	our	own	demanding	schedule,	but	ensured	that	we
deliver	up-to	date	information	at	the	time	of	release	of	this	content.	Blockchain
technology	landscape	is	in	flux	and	keeping	up	with	evolution	and	innovation	is
a	challenge.	We	have	attempted	to	distill	a	model	that	will	benefit	the	reader	to
create	a	framework	to	methodically	consume	blockchain-related	update	and
build	upon	the	foundation	laid	out	in	this	book.	We	have	also	expended	a	lot	of
energy	in	addressing	business	design	and	resulting	technology	design	choices,
because	unlike	other	pure	technology	platforms	Blockchain	(powered	business
network),	is	a	very	business-specific	and	technology-centric	discipline.	We	hope
the	findings	and	documented	considerations	from	practitioners	will	arm	business
leaders	and	technology	managers	in	making	informed	decisions	and	minimizing
the	failures	experienced	by	the	authors.

The	technical	content	covered	in	this	book,	aims	to	provide	a	solid	foundation	to
a	diverse	set	of	skills,	including	IT	professionals,	blockchain	novices,	and

advanced	blockchain	developers.	Modeled	after	a	real-world	use	case,	the
application	development	story	weaves	in	various	steps	from	infrastructure
creation	to	Dev-Ops	models	and	model-driven	development,	covering	various
enterprise	technology	management	challenges	with	a	focus	on	the	blockchain
network-centric	impact	of	application	deployment.	We	have	provided	a
framework	for	security	and	performance	design,	which	we	hope	the	technical
audience	find	particularly	helpful	and	establish	a	solid	foundation	as	a
technology	design	consideration.

We'll	conclude	the	book	with	a	pragmatic	view	of	various	challenges	and	related
opportunities,	and	call	for	the	community	of	readers	to	rise	up	to	the	challenges
	and	reap	the	rewards	of	the	resulting	opportunities.	While	this	book		focuses	on
and	targets	Hyperledger	projects,	we	expect	the	core	topics	covered	in	this	book
to	be	universally	applicable	to	the	blockchain	technology	discipline.	We
sincerely	hope	that	our	effort	in	time	and	acumen	is	well	received	by	our	readers
and	arm	them	with	a	strong	foundation	to	make	impactful	contributions	to
progressing	the	blockchain	innovation	agenda.

Who	this	book	is	for
The	book	benefits	business	leaders	as	it	provides	a	comprehensive	view	on
blockchain	business	models,	governance	structure,	and	business	design
considerations	of	blockchain	solutions.	Technology	leaders	stand	to	gain	a	lot
from	the	detailed	discussion	around	the	technology	landscape,	technology
design,	and	architecture	considerations	in	the	book.	With	model-driven
application	development,	this	guide	will	speed	up	understanding	and	concept
development	for	blockchain	application	developers.	The	simple	and	well
organized	content	will	put	novices	at	ease	with	blockchain	concepts	and
constructs.	

What	this	book	covers
Chapter	1,	Blockchain	-	Enterprise	and	Industry	Perspective,	you've	heard	about
blockchain	and	you	are	wondering,	What	is	all	the	fuss	about?	In	this	chapter,	we
explore	why	blockchain	is	a	game	changer,	what	innovation	it	brings,	and	what
the	technology	landscape	is.

Chapter	2,	Exploring	Hyperledger	Fabric,	with	an	understanding	of	the
blockchain	landscape,	we	turn	our	attention	to	Hyperledger	Fabric.	The	aim	of
this	chapter	is	to	walk	you	through	the	deployment	of	each	component	of
Hyperledger	Fabric	while	unveiling/building	the	architecture.

Chapter	3,	Setting	the	Stage	with	a	Business	Scenario,	describes	a	business	use
case	and	then	focuses	on	understanding	the	process	of	creating	a	good	business
network	using	blockchain	from	requirements	to	design.

Chapter	4,	Designing	a	Data	and	Transaction	Model	with	Golang,	aims	to	define
what	makes	up	a	smart	contract	in	Hyperledger	Fabric.	It	will	also	introduce	you
to	some	terms	regarding	smart	contracts	and	get	you	to	experience	the
development	of	a	chaincode	using	the	Go	language.

Chapter	5,	Exposing	Network	Assets	and	Transactions,	leveraging	the	smart
contract	written	in	the	previous	chapter,	this	chapter	looks	at	the	required
integration	of	application	to	the	network.	It	takes	the	readers	through	the	process
of	configuring	a	channel,	and	installing	and	invoking	chaincode,	from	a	client
application	and	considers	the	various	integration	patterns	that	might	be	used.

Chapter	6,	Business	Networks,	has	an	objective	to	introduce	and	uncover	the	skills
and	tools	needed	to	model	a	business	network.	Working	at	a	higher	level	of
abstraction,	the	foundation,	tools,	and	framework	will	provide	the	reader	with	a
way	to	quickly	model,	design,	and	deploy	a	complete	end-to-end	business
network.

Chapter	7,	A	Business	Network	Example,	putting	the	concepts	of	Chapter	6	into
practice,	this	chapter	walks	through	the	steps	to	deploy	a	full	business	network
from	end	user	application	to	smart	contracts.

Chapter	8,	Agility	in	a	Blockchain	Network,	focuses	on	the	aspects	required	to
maintain	agility	in	a	blockchain	network.	Applying	DevOps	concepts,	the	reader
is	presented	with	a	continuous	integration	/	continuous	delivery	pipeline.

Chapter	9,	Life	in	a	Blockchain	Network,	aims	to	raise	the	reader's	awareness	on
the	key	activities	and	challenges	that	organizations	and	consortium	may	face
when	adopting	a	distributed	ledger	solution,	ranging	from	management	of
application	changes	to	maintenance	of	adequate	performance	levels.	A
successful	network	deployment	will	hopefully	see	many	organizations	join	it	and
the	number	of	transactions	increase.

Chapter	10,	Governance	–The	Necessary	Evil	of	Regulated	Industries,	governance
is	a	necessary	evil	for	regulated	industries,	but	governance	is	not	required
only	for	business	network	that	deal	with	use	cases	for	regulated	industries.	It	is
also	a	good	practice	to	ensure	longevity	and	scalability	of	a	business	network.
This	chapter	explores	vital	considerations	for	production	readiness	for	any
founder-led	blockchain	network.

Chapter	11,	Hyperledger	Fabric	Security,	lays	the	foundation	for	security	design
of	blockchain	networks.	Various	security	constructs	are	discussed	and
Hyperledger	Fabric	security	is	explained	in	detail.	An	essential	chapter	to
understand	security	design	considerations.

Chapter	12,	The	Future	of	Blockchain	and	the	Challenges	Ahead,	looks	ahead	and
discusses	the	challenges	and	opportunities	that	lie	ahead.	Through	the	use	of
open	technologies,	it	invites	readers	to	engage	in	and	promote	the	blockchain
innovation	agenda.

To	get	the	most	out	of	this	book
1.	 We've	focused	on	organization	and	flow.	The	content	is	made	to	ensure	not

only	an	easy-to-follow	and	natural	flow	but	also	topical	modularity.
2.	 Each	chapter	explores	a	facet	of	blockchain.	While	Hyperledger	projects

are	specifically	discussed,	the	core	areas	of	focus	are	universal	to
blockchain	technology	discipline.

3.	 Explore	the	summary	and	tips	in	each	chapter	to	get	an	essence	of	topics
covered.

4.	 There	are	chapters	that	provide	general	blockchain	business	and	technology
landscape	discussions,	and	there	are	chapters	that	go	into	specific	technical
how-to.	Both	are	important	topics	to	broaden	your	knowledge	base.

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Handson-Blockchain-Development-with-Hyperledger.	We	also	have	other	code
bundles	from	our	rich	catalog	of	books	and	videos	available	at	https://github.com/P
acktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Handson-Blockchain-Development-with-Hyperledger
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	path	names,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"The	orderer	belongs	to	its	own	organization
called	TradeOrdererOrg."

A	block	of	code	is	set	as	follows:

-	&ExporterOrg

		Name:	ExporterOrgMSP

		ID:	ExporterOrgMSP

		MSPDir:	crypto-config/peerOrganizations/exporterorg.trade.com/msp

		AnchorPeers:

				-	Host:	peer0.exporterorg.trade.com

				Port:	7051

Any	command-line	input	or	output	is	written	as	follows:

CONTAINER	ID				IMAGE				COMMAND				CREATED				STATUS				PORTS				NAMES

4e636f0054fc				hyperledger/fabric-peer:latest				"peer	node	start"				3	minutes	ago				

Up	3	minutes				0.0.0.0:9051->7051/tcp,	0.0.0.0:9053->7053/tcp				

peer0.carrierorg.trade.com

28c18b76dbe8				hyperledger/fabric-peer:latest				"peer	node	start"				3	minutes	ago				

Up	3	minutes				0.0.0.0:8051->7051/tcp,	0.0.0.0:8053->7053/tcp				

peer0.importerorg.trade.com

9308ad203362				hyperledger/fabric-ca:latest				"sh	-c	'fabric-ca-se..."				3	minutes	

ago				Up	3	minutes				0.0.0.0:7054->7054/tcp				ca_peerExporterOrg

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"You	can	apply	for	a	letter	of	credit	by	clicking	on
the	Apply	button."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

https://www.packtpub.com/

Blockchain	-	Enterprise	and	Industry
Perspective
Blockchain	promises	to	fundamentally	solve	the	issues	of	time	and	trust	to
address	inefficiencies	and	costs	in	industries	such	as	financial	services,	supply
chains,	logistics,	and	healthcare.	Blockchain's	key	features	include	immutability
and	a	shared	ledger	where	transactional	updates	are	performed	by	a	consensus-
driven	trust	system,	which	can	facilitate	a	truly	digital	interaction	between
multiple	parties.

This	digital	interaction	is	not	only	bound	by	systemic	trust,	but	ensures	that	the
provenance	of	the	transactional	record	maintains	an	immutable	track	record	of
interaction	between	parties.	This	very	characteristic	lends	itself	to	culpability
and	non-repudiation,	and	incentivizes	fair	play.	With	the	blockchain	system
design,	we	are	attempting	to	build	a	system	that	has	implied	trust.	This	trust
system	leads	to	reduced	risks,	and	various	applied	technology	constructs	such	as
a	cryptography,	encryption,	smart	contracts,	and	consensus	essentially	create
gates	to	not	only	reduce	risk	but	to	also	infuse	added	security	into	the	transaction
system.

We	will	be	covering	the	following	aspects	of	blockchain	in	our	discussion	for
this	chapter:

Defining	a	blockchain
Building	blocks	of	blockchain	solutions
Fundamentals	of	the	secure	transaction	processing	protocol
Applications	of	blockchain
Blockchain	in	an	enterprise
Enterprise	design	principles
Business	considerations	for	choosing	a	blockchain	framework
Considerations	for	choosing	a	blockchain	framework

Defining	the	terms	–	what	is	a
blockchain?
At	a	technical	level,	a	blockchain	can	be	defined	as	an	immutable	ledger	for
recording	transactions,	maintained	within	a	distributed	network	of	mutually
untrusting	peers.	Every	peer	maintains	a	copy	of	the	ledger.	The	peers	execute	a
consensus	protocol	to	validate	transactions,	group	them	into	blocks,	and	build	a
hash	chain	over	the	blocks.	This	process	forms	the	ledger	by	ordering	the
transactions	as	is	necessary	for	consistency.	Blockchains	have	emerged	with
bitcoin	(http://	bitcoin.org/)	and	are	widely	regarded	as	a	promising	technology
to	run	trusted	exchanges	in	the	digital	world.

A	blockchain	supporting	a	cryptocurrency	is	public,	or	permissionless,	in	the
sense	that	anyone	can	participate	without	a	specific	identity.	Such	blockchains
typically	use	a	consensus	protocol	based	on	proof	of	work	(PoW)	and	economic
incentives.	In	contrast,	permissioned	blockchains	have	evolved	as	an	alternative
way	to	run	a	blockchain	between	a	group	of	known,	identified	participants.	A
permissioned	blockchain	provides	a	way	to	secure	interactions	between	a	group
of	entities	who	share	a	mutual	goal	but	don't	fully	trust	each	other,	such	as
businesses	that	exchange	funds,	goods,	or	information.	A	permissioned
blockchain	relies	on	the	identities	of	its	peers,	and	in	so	doing	can	use	the
traditional	Byzantine-fault	tolerant	(BFT)	consensus.	BFT	is	a	protocol	that
has	been	widely	used	in	IT	solutions	to	reach	a	consensus	on	the	state	of	faulty
nodes	of	a	network.	This	protocol	is	based	on	the	Byzantine	General's	Problem,
whereby	a	group	of	general	need	to	reach	a	consensus	on	their	strategy	but	one
of	them	maybe	treacherous.

Blockchains	may	execute	arbitrary,	programmable	transaction	logic	in	the	form
of	smart	contracts,	as	exemplified	by	Ethereum	(http://ethereum.org/).	The	scripts
in	bitcoin	were	predecessors	of	this	concept.	A	smart	contract	functions	as	a
trusted,	distributed	application	and	gains	its	security	from	the	blockchain	and
underlying	consensus	among	its	peers.

Discerning	permissions	from	a	permissionless	blockchain	is	vital	for	enterprises

https://bitcoin.org/en/
http://ethereum.org/

looking	to	utilize	the	blockchain	platform.	The	use	case	dictates	the	choice	of
technology,	which	depends	on	consensus	systems,	governance	models,	data
structure,	and	so	on.	With	permissioned	blockchains,	we	can	do	some	of	the
things	we	already	do	but	in	an	incrementally	better	way,	which	can	be
significant.	In	the	chart	that	follows,	you	can	see	how	a	consortium	of	banks
could	use	Hyperledger,	a	type	of	permissioned	blockchain,	for	clearing	and
settlement	without	relying	on	a	central	clearing	house:

Clearing	house	have	been	created	because	banks	do	not	fully	trust	each	other	and
thus	as	the	intermediary	between	trades,	reduces	the	risk	the	one	party	does	not
honor	his	terms	leads	to	a	never-ending	debate	around	permissioned	versus
permissionless	blockchains,	and	while	this	chapter	will	not	address	the	debate,
blockchain	can	present	a	way	to	either	transform	or	disrupt	the	current	business
and	business	models.	Most	use	cases	in	regulated	industries	embark	on
permissioned	blockchain	models.

This	is	due	to	regulatory	requirements	and	the	economic	viability	of	transaction
processing,	and	while	permissionless	blockchains	provide	a	platform	for	new
business	models	such	as	Peer-to-Peer	(P2P)	transactions	and	disintermediation-
led	models,	by	definition	permissionless	blockchain	architecture	relies	on	a	very
compute-intensive	compute	model	to	ensure	transactional	integrity.	Regardless
of	the	choice	in	blockchain	models,	blockchain	provides	a	lot	of	possibilities	for
transformation	and	disruption.

Blockchain	has	extraordinary	potential	as	a	technology	platform.	In	the
enterprise,	blockchain	can	provide:

A	design	approach	that	keeps	transaction	data,	value,	and	state	inherently
close	to	the	business	logic
Secure	execution	of	business	transactions,	validated	through	a	community,
in	a	secure	process	that	facilities	the	trust	and	robust	transaction	processing
that	are	foundational	to	blockchain
An	alternative,	permissioned	technology	that	conforms	to	existing
regulations

Blockchain	promises	to	solve	longstanding	industry	concerns—and	this	is	where	its	potential
can	really	be	seen,	with	issues	such	as	modernizing	financial	and	trade	systems,	and	speeding
up	securities	and	trade	settlements.

Four	core	building	blocks	of
blockchain	framworks
Blockchain	frameworks	typically	include	the	following	four	building	blocks:

	A	shared	ledger:	The	shared	ledger	appends	only	the	distributed
transaction	record.	Bitcoin	blockchain	was	designed	with	the	intent	to
democratize	visibility;	however,	with	blockchain,	consumer	data
regulations	also	need	to	be	considered.	Using	a	properly	configured	SQL	or
noSQL	distributed	database	can	achieve	immutability,	or	append-only
semantics.
Cryptography:	Cryptography	in	a	blockchain	ensures	authentication	and
verifiable	transactions.	Blockchain	design	includes	this	imperative	because
of	the	focus	on	assuming	computational	hardness	and	making	encryption
harder	for	an	adversary	to	break.	This	is	an	interesting	challenge	with
bitcoin	blockchain	because	of	the	economic	incentive	and	its	system	design.
When	you're	working	in	a	less	democratic	or	permissioned	business	ledger
network,	considerations	around	cryptography	change.
Trust	systems	or	consensus:	Trust	systems	refer	to	using	the	power	of	the
network	to	verify	transactions.
Trust	systems	are	central	to	blockchain	systems	in	my	view;	they	are	at	the
heart	of	blockchain	applications,	and	we	believe	trust	system	is	the
preferred	term	over	consensus	system	since	not	all	validation	is	done
through	consensus.	This	foundational	element	of	trust	dictates	the	overall
design	and	investment	in	a	blockchain	infrastructure.	With	every	new
entrant	in	the	blockchain	space,	the	trust	system	is	modified,	forming
variations	that	are	specialized	for	specific	blockchain	use	cases.	Trust,
trade,	and	ownership	are	staples	of	blockchain	technology.	For	inter-
company	transactions,	the	trust	system	governs	transactions	for	trade
between	participating	companies.
Much	work	still	needs	to	be	done	to	define	the	best	trust	system	for	specific
use	cases,	such	as	P2P	and	sharing	economy	models	with	B2B	models.

Business	rules	or	smart	contracts:	Smart	contracts	are	the	business	terms
that	are	embedded	in	a	blockchain	transaction	database	and	executed	with

transactions.	This	is	also	the	rules	component	of	a	blockchain	solution.	It	is
needed	to	define	the	flow	of	value	and	state	of	each	transaction.

The	following	use	diagram	gives	a	good	idea	of	these	concepts:

The	four	building	blocks	are	generally	accepted	and	well	understood.	They	have
existed	for	decades	prior	to	blockchain.	Shared	ledgers	are	an	evolutionary
change,	similar	to	the	move	to	computer-based	spreadsheets,	but	the	underlying
business	rules	have	stayed	the	same.

Additional	capabilities	to	consider
What	else	should	be	included	in	enterprise	blockchain	proposals?	Here	is	a	non-
exhaustive	list	of	other	capabilities	to	consider:

Auditing	and	logging:	Including	auditing	and	logging	in	a	blockchain
solution	can	help	with	addressing	regulations	for	the	purposes	of	non-
repudiation,	technology	root	cause	analysis,	fraud	analysis,	and	other
enterprise	needs.
Enterprise	integration:	It's	also	worth	considering	how	the	solution	will	be
integrated	into	the	enterprise:

Integration	with	the	incumbent	Systems	of	Record	(SoR):	The	goal
here	is	to	ensure	that	the	blockchain	solution	supports	your	existing
systems	such	as	CRM,	business	intelligence,	reporting	and	analytics,
and	so	forth
Integration	as	a	transaction	processing	system:	If	you	want	to
preserve	the	system	of	record	as	an	interim	approach	to	adopting
blockchain,	integrating	it	as	a	transaction	processing	system	makes
sense
Design	with	the	intent	to	include	blockchain:	The	path	of	least
disruption	to	your	existing	systems	will	accelerate	enterprise	adoption
of	blockchain

Monitoring:	Monitoring	is	an	important	capability	for	addressing
regulations	and	ensuring	high	availability,	capacity	planning,	pattern
recognition,	and	fault	identification.
Reporting	and	regulatory	requirements:	Being	prepared	to	address
regulatory	issues	is	also	very	important,	even	for	interim	adoption	of	a
blockchain	as	a	transaction	processing	system.	It's	recommended	that	you
make	connectors	to	your	existing	SoR	to	offload	reporting	and	regulatory
requirements	until	blockchain	is	enterprise-aware,	or	the	enterprise	software
is	blockchain-aware.
Enterprise	authentication,	authorization,	and	accounting	requirements:
In	a	permissioned	enterprise	world	(unlike	permissionless	bitcoin
blockchains),	all	blockchain	network	participants	should	be	identified	and
tracked.	Their	roles	need	to	be	defined	if	they	are	to	play	a	part	in	the
ecosystem.

Fundamentals	of	the	secure
transaction	processing	protocol
We	mentioned	previously	that	cryptography	is	one	of	the	core	building	blocks	of
a	blockchain	solution.	The	fundamental	security	of	the	bitcoin	blockchain	is	the
elegant	cryptographical	linkage	of	all	major	components	of	the	ledger.
Specifically,	transactions	are	linked	to	each	other,	mainly	through	the	Merkle
tree.		A	Merkle	tree	is	based	on	the	concept	of	a	tree	data	structure	where	every
leaf	node	has	a	hash	calculated	of	its	data	and	where	the	non-leaf	node	have	a
hash	of	all	of	their	underlying	child.	This	method	provides	a	way	to	ensure	the
integrity	of	the	data,	but	also	provides	privacy	characteristics	by	allowing	one	to
remove	a	leaf	that	is	deemed	private	but	leave	the	hash,	thereby	preserving	the
integrity	of	the	tree.	The	Merkle	tree	has	its	roots	incorporated	into	the	block
header.	The	block	header	includes	a	reference	to	the	block	headers	that	precede
it.

That	cryptographically	enforced	interconnectivity	fosters	the	stability	and
security	of	distributed	ledgers.	At	any	point,	if	a	link	between	any	of	the
components	is	broken,	it	leaves	them	exposed	to	malicious	attacks:

Transactions	are	also	cryptographically	connected	to	the	rest	of	the	blockchain
structure,	mainly	through	the	Merkle	tree.	Once	a	transaction	is	modified	within

a	block,	with	all	other	parts	remaining	stable,	the	link	between	all	transactions	of
the	block	and	its	header	are	broken:

The	new	resulting	Merkle	tree	root	does	not	match	the	one	already	in	the	block
header,	hence	providing	no	connectivity	to	the	rest	of	the	blockchain.	If	we
proceed	to	change	the	Merkle	tree	root	in	the	block's	header,	we	will	in	turn
break	the	chain	of	headers	and	thus	the	security	model	of	the	blockchain	itself.
Therefore,	if	we	only	change	the	contents	of	a	block,	the	rest	of	the	blockchain
components	remain	stable	and	secure,	especially	as	the	block	headers	provide
the	connecting	links	by	including	a	hash	of	the	previous	block	header	in	the
header	of	the	next	block.

Where	blockchain	technology	has
been	and	where	it's	going
Blockchain	has	already	been	a	business	disruptor,	and	I	expect	it	to	significantly
transform	industries,	the	government,	and	our	lives	in	the	near	future.

The	great	divide
A	significant	divided	exists	between	the	cryptocurrency	and	Initial	Coin
Offering	(ICO)	world,	and	the	world	of	regulated	business.	The	latter	consists
of	banks	and	financial	institutions	working	collectively	to	assess	market
potential	and	operational	efficiencies.

Both	sides	of	this	division	have	taken	advantage	of	the	momentum	around
blockchain	to	further	their	interests.	The	blockchain	ecosystem	has	challenged
the	status	quo	and	defied	all	odds	to	make	a	point—often	behaving	like	an
adolescent.	It	is	driven	by	new	business	models,	promises	of	disintermediation,
and	interesting	technological	innovations.	As	blockchain	gains	momentum,	the
value	of	bitcoin	and	other	cryptoassets	is	seeing	a	meteoric	rise,	and	now	that
ICO	has	emerged,	it	has	defied	the	traditional	regulatory	framework	around
fundraising.

On	the	enterprise	side,	there	are	a	growing	number	of	industry	initiatives	around
clearing	and	settlement	to	enable	faster	settlement	and	interbank	transfers,
transparency	through	digitization,	symmetric	dissemination	of	information	in
supply	chains,	and	creating	adhoc	trust	between	Internet	of	Things	(IoT)
devices.

There's	a	common	theme	here—that	blockchain	is	here	to	stay.	As	it	continues	to
evolve	and	generate	innovative	solutions	for	industry	use	cases,	it	will	keep
inching	towards	maturity	and	deliver	on	its	promises	of	efficiency	and
significant	cost	savings	built	on	the	foundation	of	trust.

An	economic	model	for	blockchain
delivery
Business	networks,	underpinned	by	blockchain	technology,	may	bring
transformation	or	disruption	to	industries,	but	in	any	case,	in	order	to	thrive,
blockchain	needs	an	economic	model.	If	disruption	is	the	aim,	investments	in
technology,	talent,	and	market	synergy	can	be	combined	with	the	lure	of
economic	incentives.	ICOs,	for	example,	typically	rely	on	tokenomics,	a	term
that	describes	the	economic	system	of	value	generation	in	those	networks.	The
token	is	the	unit	of	value	created	by	the	system	or	network,	either	through
making	a	platform	for	providers	or	consumers,	or	through	co-creating	a	self-
governing	value	network	in	its	business	model	that	various	entities	can	use	to
their	advantage	for	creating,	distributing,	and	sharing	rewards	that	benefit	all
stakeholders.

The	ICO	front,	largely	funded	by	cryptocurrencies,	has	defied	current
fundraising	mechanisms	in	venture	capitalism	(led	by	crowdfunding	projects),
and,	importantly,	the	struggle	to	discern	the	difference	between	a	security	and
utility	coin	is	disruptive	in	principle.

ICOs	are	looking	to	create	an	economic	system	built	on	the	principles	of
decentralization,	open	governance	(or	self-governance),	and	transparency,	a
system	that	rewards	innovation	and	eradicates	disintermediation.	ICOs	saw	some
initial	failures	and	some	successes,	but	they	nevertheless	provided	a	preview	of
the	future,	where	cryptoassets	will	become	a	basic	unit	of	value—with	valuation
and	fungibility	defined	by	the	network	they	originate	from—fueling	an	economy
built	for	and	around	innovation.

On	the	enterprise	front,	there's	been	more	focus	on	understanding	the	technology
and	reimagining	ecosystems,	business	networks,	regulations,	confidentiality	and
privacy,	and	the	business	models	that	impact	blockchain	networks	in	various
industries.	Enterprises	looking	to	explore	blockchain	want	to	see	quick	proof
points,	use	cases	that	can	demonstrate	results	quickly	and	help	them	innovate
with	blockchain.

Blockchain	is	helping	industries	move	to	a	more	symmetric	dissemination	of
information	by	providing	built-in	control	of	transactional	data,	provenance,	and
historical	context.	This	can	lead	to	more	efficient	workflows	and	transformed
business	processes.	Many	early	projects,	however,	didn't	focus	on	the	core	tenets
of	blockchain,	leading	to	disintermediation,	decentralization,	and	robust	self-
governance	models.	There's	a	good	reason	for	it,	though:	industries	and
conventional	businesses	tend	to	be	focused	on	their	current	business	agenda,
models,	growth,	and	preceding	all,	regulatory	compliance	and	adherence.	This
emphasis	on	current	business	operations	means	they're	not	naturally	inclined
towards	disruptive	models.

Learning	as	we	go
With	any	new	technology,	there	is	always	a	learning	curve.	As	blockchain
evolved	and	we	began	to	work	with	regulated	industries,	we	quickly	recognized
that	in	such	industries,	there	are	important	design	considerations	to	address,
things	such	as	confidentiality,	privacy,	scalability,	and	performance.	These
elements	can	have	significant	cost	implications	when	it	comes	to	designing
blockchain	networks,	as	well	as	the	business	models	that	govern	these	networks.
These	challenges	have	not	only	been	interesting	to	solve;	they've	had	a	positive
effect	on	conventional,	regulated	industries	and	businesses	by	re-energizing
innovation	in	these	organizations	and	inviting	the	best	talent	to	join	in	tackling
these	challenges.	Businesses	are	seeing	that	ecosystems	and	networks	driven	by
blockchain	technology	will	contribute	to	progress	and	success.

Permissioned	networks	(regulated,	conventional,	and	enterprise	business
networks)	may	also	need	to	begin	uncovering	an	incentive	model	to	motivate
organizations	to	join	a	platform	that	promotes	the	idea	of	creation,	distribution,
and	sharing	of	rewards,	benefiting	all	stakeholders.	The	economic	incentives
behind	tokenomics	can't	be	blindly	adopted	by	a	lot	of	conventional	businesses
and	industries,	but	that	doesn't	mean	those	industries	shouldn't	start	the	journey
of	exploring	possible	business	models	that	will	enable	value	creation	and	elevate
some	desperately	needed	modernization	efforts.

The	promise	of	trust	and
accountability
Blockchain	technology	promises	to	be	the	foundation	for	a	secure	transaction
network	that	can	induce	trust	and	security	in	many	industries	that	are	plagued
with	systemic	issues	around	trust	and	accountability.	From	a	technology	point	of
view,	blockchain	facilitates	a	system	of	processing	and	recording	transactions
that	is	secure,	transparent,	auditable,	efficient,	and	immutable.	These	technology
characteristics	lend	themselves	to	addressing	the	time	and	trust	issues	that
current-day	distributed	transaction	systems	are	plagued	with.

Blockchain	fundamentally	shifts	the	multi-tier	model	to	a	flat-tier	transaction
processing	model.	This	carries	the	promise	to	fundamentally	disrupt	industries
by	disintermediation,	by	inducing	efficacy	in	new	system	design	or	simply	by
creating	new	business	models.

Disintermediation	indicates	reducing	the	use	of	intermediaries	between
producers	and	consumers,	such	as	by	investing	directly	in	the	securities	market
rather	than	going	through	a	bank.	In	the	financial	industry,	every	transaction	has
historically	required	a	counter	party	to	process	the	transaction.	Disintermediation
involves	removing	the	middleman,	which	by	definition	disrupts	the	business
models	and	incentive	economies	that	are	based	on	mediation.	There's	been	a
wave	of	disruption	in	recent	years	as	a	result	of	digital	technologies,	which	have,
in	turn,	been	driven	by	marketing	insights	and	the	desire	for	organizations	to
provide	a	richer	user	experience.

Blockchain	is	a	technology	that	aims	to	catapult	this	disruption	by	introducing
trade,	trust,	and	ownership	into	the	equation.	The	technology	pattern	represented
by	blockchain	databases	and	records	has	the	potential	to	radically	improve
banking,	supply	chains,	and	other	transaction	networks,	providing	new
opportunities	for	innovation	and	growth	while	reducing	cost	and	risk.

Industries	putting	blockchain
technology	to	work
Let's	briefly	look	into	blockchain	use	cases:

Blockchain	in	the	enterprise
Now	that	we've	looked	at	where	blockchain	is	emerging	in	various	industries,
let's	talk	about	what	principles	should	guide	the	use	of	blockchains	in	an
enterprise.	Why	would	an	enterprise	want	to	apply	blockchain	technology	to	one
of	its	systems	or	applications?

What	applications	are	a	good	fit?
Organizations	will	need	to	establish	criteria	for	use	during	the	application	design
process	to	help	them	assess	where	they	can	best	apply	blockchain	technology.
The	following	are	some	examples	of	criteria	that	could	help	an	enterprise
determine	which	applications	or	systems	would	benefit	from	it:

Applications	that	adhere	to	trade,	trust,	and	ownership:	As	described
previously,	these	three	tenets—trade,	trust	and	ownership—are	fundamental
to	any	blockchain	system.	Trade	and	ownership	imply	the	churn	and	the
transfer	of	ledger	entries,	while	trust	points	to	the	trustless	nature	of	a
transaction	system.
Applications	that	are	fundamentally	transactional	in	nature:	There	is
often	a	debate	about	why	we	can't	achieve	the	benefits	of	blockchain	from	a
distributed	database,	that	is,	a	no-SQL	or	a	relational	database.	But	a	multi-
party	transaction	is	what	makes	an	application	suitable	for	blockchain.
There	needs	to	be	long-running	processes	with	numerous	micro-
transactions	that	will	be	verified	and	validated	by	the	blockchain-powered
transaction	system.	However,	databases	can	still	be	used	for	persistence	or
replication	to	fit	enterprise	systems.	Other	considerations	include	small	data
set	sizes	that	could	increase	over	time,	logging	overhead,	and	so	on.
Business	networks	that	are	comprised	of	non-monopolistic
participants:	This	third	criteria	addresses	distributed	versus	decentralized
computation	models.	Blockchain	trust	systems	can	work	within	any	model;
however,	the	trust	aspect	of	a	blockchain	business	network	comes	from
multi-party	participants	with	non-monopolistic	participation	(the
consortium	permissioned	network	model).	Oligopolistic	participation	might
be	acceptable	(the	private	permissioned	network	model),	but	it's	essential	to
devise	a	trust	model	that	assures	the	prevention	of	centralized	control,	even
with	rational	behavior	of	the	participants.	Many	internal	use	cases	do	not
adhere	to	this	principle	and	are	more	for	distributed	application	models.

For	enterprises	trying	to	either	understand	or	determine	where	to	employ
blockchain	meaningfully,	there's	a	simple	approach	to	thinking	through	use	case
selection.	An	appropriate	use	case	for	a	sustainable	blockchain	solution	will
achieve	long-term	business	objectives	and	provide	a	strong	return	on	technology

investment.

This	starts	with	an	enterprise	problem—an	issue	big	enough	for	the	enterprise
to	expend	resources/time—and	the	recognition	of	cohorts	that	have	the	same
problem.	When	companies	realize	that	an	enterprise	problem	is	also	an	industry
problem	(such	as	security	lending,	collateral	lending,	and	so	on),	they've	found
a	use	case	where	the	promise	of	blockchain	has	the	most	potential.

While	organizations	are	determining	the	benefits	of	various	aspects	of
blockchain	for	their	enterprise	applications,	they	also	need	to	recognize	the
fragmentation	of	the	whole	blockchain	landscape.	There	are	numerous
innovative	approaches	available	for	solving	a	specific	challenge	with	blockchain.
A	lot	of	vendors	offer	variants	of	the	trust	system	that	are	specialized	to	address
particular	use	cases,	and	they've	defined	the	use	cases	that	will	benefit	most	from
blockchain	in	a	given	industry,	for	example.	Such	specialized	vendors	often
promise	a	fast	solution	to	meet	consumer	demands	for	quick	digital	interactions.

The	tenets	of	blockchain	can	be	instrumental	in	delivering	rapid	consumer-
driven	outcomes	such	as	decentralized,	distributed,	global,	permanent,	code-
based,	programmable	assets,	and	records	of	transactions.	We	should	exercise
caution	with	regards	to	thinking	of	blockchain	as	a	hammer	to	solve	every
enterprise	application	challenge,	but	it	can	be	of	use	in	many	transactional
applications.

Now,	let's	discuss	how	blockchain	is	perceived	in	the	enterprise	and	some	of	the
challenges	that	arise	with	enterprise	adoption	of	the	technology.	In	the	following
section,	I'll	focus	on	three	areas	that	help	set	the	tone	for	blockchain	in	an
enterprise	context.

How	does	the	enterprise	view
blockchain?
Radical	openness	is	an	aspect	of	blockchain	as	a	digital	trust	web,	but	in	an
enterprise,	it's	vital	to	consider	the	impact	and	implications	of	radical	openness.

A	public	blockchain	can	operate	with	extreme	simplicity,	supporting	a	highly
distributed	master	list	of	all	transactions,	which	is	validated	through	a	trust
system	supported	by	anonymous	consensus.	But	can	enterprises	directly	apply
the	model	of	the	trustless	system	without	modifying	the	fundamental	tenets	of
blockchain?

Do	organizations	view	this	disruptive	technology	as	a	path	to	their
transformation	or	merely	a	vehicle	to	help	them	improve	their	existing	processes
to	take	advantage	of	the	efficiencies	that	the	trust	system	promises?	No	matter
what,	enterprises	will	want	the	adoption	of	blockchain	to	be	as	minimally
disruptive	to	the	incumbent	system	as	it	can	be,	and	that	won't	be	easy	to
achieve!	After	all,	the	design	inefficiencies	of	the	incumbent	system	are	what
have	compelled	the	enterprise	to	consider	this	paradigm	shift.	A	lot	of	the
concepts	and	use	cases	for	blockchain	are	still	distant	from	enterprise
consumption.

The	first	industry	to	experiment	with	and	adopt	blockchain	was	the	financial
services	sector,	as	it	has	been	facing	down	the	fear	of	being	disrupted	by	another
wave	of	start-ups.	Like	many	industries,	it	is	also	driven	by	consumer	demands
for	faster,	lower-cost	transactions.	Financial	services	has	a	well-defined	set	of
use	cases	including	trade	financing,	trade	platform,	payment	and	remittance,
smart	contracts,	crowd	funding,	data	management	and	analytics,	marketplace
lending,	and	blockchain	technology	infrastructure.	The	uses	for	blockchain
we've	seen	in	this	industry	will	likely	permeate	to	other	industries	such	as
healthcare,	retail,	and	the	government	in	the	future.

The	blockchain	is	a	nascent	technology	that	brings	together	a	lot	of	good	ideas,
but	it	still	has	some	maturing	to	do	for	enterprise	use.	The	lack	of	defined

standards	to	promote	interoperability	between	multi-domain	chains	could	be	a
challenge.	Enterprises	that	adopt	it	will	therefore	need	to	build	competency	so
that	they	can	contribute	to	further	innovation	and	help	with	necessary	blockchain
standards	development.	This,	in	turn,	could	help	bring	unique	opportunities	to
both	improve	existing	business	practices	and	develop	new	business	models	built
in	a	blockchain-powered	trust	web:

Litmus	testing	to	justify	the
application	of	blockchain	technology
Fundamentally,	blockchain	addresses	three	aspects	of	the	transaction	economy:

Trade
Ownership
Trust

The	notable	technology	elements	of	blockchain	are:

Technology	behind	the	trust	system:	Consensus,	mining,	and	the	public
ledger
Secret	communication	on	open	networks:	Cryptography	and	encryption
Non-repudiation	systems:	Visibility	to	stacks	of	processes

While	the	implications	of	blockchain	technology	may	be	profound,	organizations
should	devise	a	set	of	enterprise-specific	criteria	that	can	be	applied	to	existing
or	new	projects	that	may	gravitate	towards	enterprise	blockchains.

Given	the	versatility	of	blockchain	technology	and	the	current	hype	curve,
enterprises	should	use	a	chain	decision	matrix	as	a	tool	to	ensure	that	they	have	a
structured	approach	to	apply	a	foundational	technology	to	a	business	domain.
This	approach	will	also	lend	itself	to	a	consistent	blockchain	infrastructure	and
trust	system	management,	which	will	prove	vital	as	many	application-driven
chains	evolve	and	the	demand	for	enterprise	visibility,	management,	and	control
grow.

Integrating	a	blockchain
infrastructure	for	the	whole
enterprise
Any	enterprise	adoption	of	blockchain	should	have	the	goal	of	disrupting
incumbent	systems.	Thinking	about	integration	with	enterprise	systems	of	record
is	one	way	to	work	towards	this.	In	this	manner,	an	enterprise	can	implement
blockchain-driven	transaction	processing	and	use	its	existing	systems	of	record
as	an	interface	to	its	other	applications,	such	as	business	intelligence,	data
analytics,	regulatory	interactions,	and	reporting.

It's	vital	to	separate	the	infrastructure	for	enterprise	blockchain	technology	from
the	business	domain	that	uses	chain	technology	to	gain	competitive	advantage.
Blockchain	can	be	seen	as	an	enterprise	chain	infrastructure	that's	invisible	to
businesses	and	operating	behind	the	scenes,	while	promoting	the	interprise
synergy	between	various	business-driven	chains.	The	idea	is	to	separate	the
business	domain	from	the	technology	that	supports	it.	A	chain	application	ought
to	be	provisioned	by	a	business	domain	that	has	a	suitable	trust	system.	The	trust
system,	as	I've	stated	repeatedly,	is	central	to	any	blockchain	endeavor,	and
therefore	it	should	be	appropriate	to	the	needs	of	a	given	business	application.
The	cost	of	the	infrastructure	and	compute	requirements	will	be	dictated	by	the
choice	of	trust	system	available	to	an	enterprise.

By	separating	out	the	blockchain	technology	infrastructure,	designing	an
architecture	around	a	pluggable	trust	system	by	using	trust	intermediaries	and	a
design	that	promotes	flexibility,	and	a	modular	trust	system,	the	business	can
focus	on	the	business	and	regulatory	requirements,	such	as	AML,	KYC,
nonrepudiation,	and	so	on.	The	technology	infrastructure	for	blockchain
applications	should	be	open,	modular,	and	adaptable	for	any	blockchain	variant,
thereby	making	the	blockchain	endeavor	easy	to	manage.

Interprise	synergy	suggests	driving	synergies	between	numerous	enterprise
blockchains	to	enable	inter	and	intra	enterprise	chain	(interledger)	connections.

In	this	model,	the	transactions	would	cross	the	various	trust	systems,	giving
visibility	into	the	interactions	to	enterprise	governance	and	control	systems.
Fractal	visibility	and	the	associated	protection	of	enterprise	data	are	important	to
consider	when	looking	at	these	interactions	between	business	units	and	external
enterprises.	An	invisible	enterprise	chain	infrastructure	can	provide	a	solid
foundation	to	evolve	enterprise	connectors	and	expose	APIs	to	make	incumbent
systems	more	chain-aware.

Interprise	synergy	will	flourish	due	to	conditional	programmable	contracts
(smart	contracts)	between	the	business	chains:

How	can	an	enterprise	know	if	it	is	ready	for	blockchain?	More	importantly,
when	considering	blockchain	consumption,	should	its	focus	be	on	integration
with	incumbent	transaction	systems,	or	an	enterprise-aware	blockchain
infrastructure?

To	take	full	advantage	of	the	promise	of	enterprise	blockchain,	an	integrated
enterprise	will	need	more	than	one	use	case	and	will	need	to	drive	interprise
synergy.	The	most	successful	blockchain	consumption	strategy	should	focus	on
technology	initially	and	then	consider	integration	with	existing	enterprise
business	systems.	This	will	facilitate	collective	understanding	and	accelerate
enterprise	adoption	of	the	blockchain,	hopefully	on	the	path	of	least	disruption.

Enterprise	design	principles
As	stated	previously,	blockchain	technology	promises	to	be	the	foundation	for	a
secure	transaction	network	that	induces	trust	and	security	in	industries	that	are
plagued	with	systemic	issues	around	trust	and	accountability.	It	aims	to	generate
market	and	cost	efficiencies.

In	the	past	few	years,	as	blockchain	technology	has	come	to	maturity,	we've
focused	on	how	enterprises	and	businesses	can	use	the	technology	to	relieve	pain
points	and	herald	new	business	models.	Organizations	that	have	begun	to	see
blockchain's	potential	are	now	beginning	to	reshape	business	networks	that	are
burdened	by	the	systemic	costs	of	archaic	processes,	paperwork,	and	technology.

Business	drivers	and	evolution
In	the	recent	past,	organizations	would	run	internal	business	systems	and	IT
infrastructure	out	to	the	internet	to	harness	the	collaborative	potential	of
interconnected	and	accessible	systems.	Blockchain	technology	is	taking	this	to
the	next	level,	offering	true	digital	interaction	facilitated	by	trusted	business
networks.	In	the	internet	era,	successful	enterprises	adopted	and	adapted	to
technological	challenges,	whereas	in	the	blockchain	era,	business,	rather	than
technology,	is	the	driver	for	proliferation.

While	blockchain	technology	is	interesting	on	its	own,	there	are	a	lot	of	other
mechanics	of	a	business	network	that	ought	to	be	evaluated	as	well,	including:

Consensus	models:	Which	trust	system	is	most	fitting	for	your	business
network?
Control	and	governance:	What	entities	are	permitted	to	do	what?	Who
will	own	the	investigative	process	if	there's	a	system	anomaly?
Digital	asset	generation:	Who	creates	an	asset	in	the	system?	Who	governs
it?
Authority	for	issuance:	In	a	system	that's	truly	decentralized,	the	notion	of
authority	does	not	hold	together.	So	in	a	blockchain	network,	who	would	be
responsible	for	governance,	culpability,	and	eventually	regulations?
Security	considerations:	How	will	the	network	address	enterprise	security,
including	new	security	challenges	imposed	by	a	shared	business	network?

We	imagine	a	purpose-built	blockchain	network	that's	focused	on	a	plurality	of
business	domains,	for	example,	mortgages,	payments,	exchanges,	clearing,	and
settlement	of	specific	asset	types.	In	an	enterprise	context,	we	visualize	a
centralized	network	in	which	like-minded	business	entities	share	a	consensus
consortium.	There	are	several	practical	reasons	to	back	this	idea	of	a	centralized
network,	including	the	following:

The	use	of	domain-specific	business	language,	which	leads	to	the
construction,	management,	and	governance	of	smart	contracts	as	proxy
business	representations
A	defined	asset	type,	which	leads	to	governance,	management,	and

valuation	(for	exchange,	fungibility,	and	so	on)	of	the	digital	representation
of	assets

Appropriate	regulation,	given	that	every	industry	and	business	network	is
regulated	separately,	and	therefore	the	burden	of	adhering	to	regulations	and
other	related	costs	can	be	shared	in	the	business	network
Other	related	business	functions	such	as	analysis,	analytics,	market	data,
and	so	on

We've	now	covered	the	business	drivers	for	enterprise	blockchain,	so	next	let's
consider	what	can	ensure	the	sustainability	and	longevity	of	a	blockchain
network.

Ensuring	sustainability
Blockchain-based	business	networks	are	continuing	to	evolve	and	grow,	and	as
they	do,	there	will	be	no	turning	back	on	core	issues	such	as	trust	models,	data
visibility,	and	exploiting	a	network	for	competitive	advantage.

Focusing	on	sustainability	can	seem	paradoxical	because	it	promotes	open
collaborative	innovation	while	at	the	same	time	locking	down	constructs	such	as
consensus	or	trust	systems	and	the	governance	systems	for	managing	assets,
smart	contracts,	and	overall	interaction	in	a	multiparty	transaction	network.
Blockchain	system	design	needs	to	take	all	of	this	under	consideration.

A	business	network	with	a	successful	system	design	needs	to	align	well	with	the
blockchain	tenets	of	trade,	trust,	ownership,	and	transactionality	in	a	multi-party
scenario.	Without	building	on	these	core	tenets,	business	networks	may	not
realize	the	promise	of	blockchain	technology	in	a	sustainable	way.

Here	are	seven	design	principles	to	support	and	sustain	growth	in	a	blockchain
business	network:

The	network	participants	need	to	have	control	of	their	business
The	network	has	to	be	extensible,	so	that	participants	have	flexibility	to	join
or	leave	the	network
The	network	must	be	permissioned	but	also	protected,	to	safeguard
competitive	data	while	facilitating	peer-to-peer	transactions
The	network	should	allow	open	access	and	global	collaboration	for	shared
innovation
The	network	must	be	scalable	for	both	transaction	processing	and	encrypted
data	processing

The	network	has	to	be	able	to	accommodate	enterprise	security	and	address
new	security	challenges
The	network	needs	to	coexist	with	established	systems	of	record	and
transaction	systems	in	the	enterprise

We	will	list	the	design	principles	graphically	as	follows:

The	principles	that	drive	blockchain
adoption
In	any	enterprise,	blockchain	adoption	is	driven	by	three	principles:	the	business
blueprint,	the	technology	blueprint,	and	enterprise	integration.

The	following	are	some	indispensable	things	to	consider	when	choosing	a
blockchain	framework	according	to	these	three	principles:

Business	blueprint:	Blockchain	promises	to	create	a	business	network	of
value	based	on	trust.	To	do	this,	it's	vital	to	understand	how	various
blockchain	frameworks	handle	network	interaction	patterns,	inefficiencies,
and	vulnerabilities.
Technology	blueprint:	If	technology	is	to	align	with	business	imperatives,
organizations	need	to	make	appropriate	technology	and	architecture	choices
for	their	needs.	Transactions	per	second	(TPS),	enterprise	integration,
external	system	integration,	and	regulatory	and	compliance	requirements
may	be	taken	under	advisement	here.	These	decisions	are	all	part	of	the
technical	due	diligence	necessary	to	properly	budget	for	blockchain
adoption.
Enterprise	integration:	Integrating	blockchain	into	enterprise	systems,
especially	an	adjacent	system,	is	an	important	business	and	technology
consideration	(because	downstream	transaction	systems	affect	critical
business	systems)	as	well	as	a	cost	point.	Based	on	my	experience,	if
organizations	don't	focus	on	adjacent	system	integration	early	in	the
planning,	it	can	impede	adoption,	because	it	has	a	significant	cost	impact	on
blockchain	projects.

In	the	following	sections,	I	cover	each	of	these	design	considerations	in	a	bit
more	detail.

Business	considerations	for	choosing
a	blockchain	framework
Numerous	criteria	come	into	play	when	organizations	are	evaluating	whether	to
adopt	blockchain	to	address	their	pain	points.	Here	are	some	considerations	from
a	business	perspective:

Open	platform	and	open	governance:	The	technology	standards	a
business	chooses	will	set	the	stage	for	enterprise	blockchain	adoption,
compliance,	governance,	and	the	overall	cost	of	the	solution.
Economic	viability	of	the	solution:	Whatever	blockchain	framework	an
organizations	chooses	should	provide	cost	alignment	to	its	existing	business
models,	charge	backs,	compute	equity,	and	account	management.	This
flows	into	ROI.

Longevity	of	the	solution:	As	organizations	aspire	to	build	a	trusted
network,	they'll	want	to	ensure	that	they	can	sustain	the	cost	and	operation
of	the	network	so	that	it	can	grow	and	scale	to	accommodate	additional
participants	and	transactions.
Regulatory	compliance:	Compliance	issues	are	closely	tied	to	transaction
processing	and	can	include	events	such	as	industry-specific	reporting	and
analysis	for	business	workflows	and	tasks,	both	automated	and	human-
centric.
Coexistence	with	adjacent	systems:	A	blockchain	network	needs	to	be
able	to	coexist	with	the	rest	of	the	enterprise,	network	participants,	and
adjacent	systems,	which	may	have	overlapping	and	complementary
functions.
Predictable	costs	of	business	growth:	Business	growth	depends	upon
predictable	metrics.	Historically,	a	lot	of	industries	have	focused	on
transactions	per	second,	but	that	measurement	differs	from	system	to
system	based	on	system	design,	compute	costs,	and	business	processes.
Access	to	skills	and	talent:	The	availability	of	talent	affects	costs	as	well
as	maintenance	and	the	longevity	of	a	blockchain	solution	as	the	industry
and	technology	evolve	with	continued	innovation.
Financial	viability	of	technology	vendors:	When	choosing	vendors,	it's

vital	to	think	about	their	viability	when	it	comes	to	long-term	support	and
the	longevity	of	your	blockchain	solution.	You	should	examine	the	long-
term	vision	and	the	sustainability	of	the	vendor	or	the	business	partner's
business	model.
Global	footprint	and	support:	Blockchain	solutions	tend	to	involve
business	networks	with	a	global	reach	and	the	related	skills	to	support	the
network's	expansion	with	minimal	disruption.
Reliance	on	technology	and	industry-specific	standards:	Standards	are
critical,	not	only	in	helping	to	standardize	a	shared	technology	stack	and
deployment,	but	also	in	establishing	an	effective	communication	platform
for	industry	experts	to	use	for	problem	solving.	Standards	make	low-cost,
easy-to-consume	technology	possible.

Blockchain	vendors	offer	various	specializations,	including:

Variant	trust	systems:	Consensus,	mining,	proof	of	work,	and	so	on.
Lock-in	to	a	single	trust	system
Infrastructure	components	that	are	purpose-built	for	particular	use	cases
Field-tested	design	through	proof	of	concept

The	technological	risk	of	a	vendor	not	adhering	to	reference	architecture	based
on	standardized	technology	set	is	a	fragmented	blockchain	model	for	the
enterprise.

From	a	business	point	of	view,	an	open	standards-based	approach	to	blockchain
offers	flexibility,	along	with	a	pluggable	and	modular	trust	system,	and	therefore
is	the	most	ideal	option.	This	approach	keeps	an	enterprise	open	to	specialized
blockchains	such	as	Ripple,	provides	a	provisioning	layer	for	the	trust	system,
and	offers	a	separate	business	domain	with	the	technology	to	support	it.

Technology	considerations	for
choosing	a	blockchain	framework
When	organizations	consider	the	technology	implications	of	blockchain,	they
should	start	with	the	premise	that	it	is	not	just	another	application.	It's	a
production	network	that	involves	risks	and	costs	to	ensure	correct	upkeep	and
maintenance.

Here	are	some	important	things	to	ponder	when	evaluating	blockchain's
technological	impact.

Identity	management
Identity	management	is	a	complicated,	involved	topic,	especially	in	regulated
industries	where	identities	must	be	managed	and	have	significant	business
consequences,	such	as	around	activities	including	Know	Your	Customer
(KYC),	Anti-Money	Laundering	(AML),	and	other	reporting	and	analytics
functions:

Permissioning	is	the	concept	of	member	enrollment	certificates
(eCerts)	and	transaction	certificates	for	each	member	(tCerts);	these
enable	an	entity	to	be	permissioned	and	identified	while	transactions	are
completed
End	user	identity,	which	is	maintained	by	a	participating	entity	in	the
blockchain	network,	is	the	mapping	of	the	LDAP/User	registry	to	the	tCerts
or	transaction	ID	for	the	sake	of	tracing	(Know	Your	Customer,	as	well	as
Know	Your	Customer's	Customer)

Other	identity	management	considerations	include:

An	LDAP	or	existing	user	registry	won't	go	away	and	has	to	be	considered
as	a	design	point,	since	there's	typically	been	significant	investment	and
security	policies	in	place	for	mature	authentication	and	authorization
systems
Trust	systems	are	at	the	heart	of	blockchain	technology	and	must	pave	the
way	for	trust	with	identity	insertion	(for	use	cases	that	require	transactional
traceability)
The	identity	on	blockchain	and	for	blockchain
Identity	acquisition,	vetting,	and	life	cycle
Alignment	with	trust	systems	based	on	use	cases

Scalability
Scalability	is	both	a	business	and	a	technology	consideration,	given	the	way
downstream	transaction	systems	can	affect	critical	business	systems.	Technology
choices	for	scalability,	for	example	database	choices	for	the	shared	ledger,
adjacent	system	integration,	encryption,	and	consensus,	bring	about	a	system
design	that	can	accommodate	the	predictable	costs	of	growth	in	network
membership	or	transactions.

Enterprise	security
There	are	three	layers	of	enterprise	security	to	think	about:

The	physical	IT	infrastructure	layer,	which	includes	use	case-specific
issues	such	as	EAL5,	network,	and	infrastructure	isolation	requirements.
The	blockchain	middleware	layer,	which	includes	requirements	for	crypto
modules,	encryption	levels,	encryption	on	data	storage,	transfer	and	data	at
rest,	and	visibility	of	data	between	participants	in	the	network.
The	blockchain	consensus	(trust	system	layer),	which	is	central	to
blockchain	and	necessary	to	guarantee	basic	data	store	properties.	If	there
are	more	players	in	the	network,	they	have	to	bring	capital	equity	to	scale.
This	is	about	building	a	shared	data	store	with	enterprise	data	qualities	at	a
lower	barrier	to	entry.	Consensus,	even	minimal	consensus,	is	necessary	to
ensure	this	on	the	architecture	in	place.	There's	now	a	divide	between
cryptocurrency-based	trust	systems	and	non-cryptocurrency-based	trust
systems.	The	former	models,	such	as	POW/PoS,	aren't	sustainable	for
enterprise	use	cases	aspiring	to	create	permissioned	blockchains.

Development	tooling
Considerations	for	development	tooling	include	an	integrated	development
environment,	business	modeling,	and	model-driven	development.

Crypto-economic	models
The	crypto-economic	model	refers	to	a	decentralized	system	that	uses	public	key
cryptography	for	authentication	and	economic	incentives	to	guarantee	that	it
continues	without	going	back	in	time	or	incurring	other	alterations.	To	fully
grasp	the	idea	of	blockchain	and	the	benefits	of	cryptography	in	computer
science,	we	must	first	understand	the	idea	of	decentralized	consensus,	since	it	is
a	key	tenet	of	the	crypto-based	computing	revolution.

Decentralization	with	systemic
governance
The	old	paradigm	was	centralized	consensus,	where	one	central	database	would
rule	transaction	validity.	A	decentralized	scheme	breaks	with	this,	transferring
authority	and	trust	to	a	decentralized	network	and	enabling	its	nodes	to
continuously	and	sequentially	record	transactions	on	a	public	block,	creating	a
unique	chain—thus	the	term	blockchain.	Cryptography	(by	way	of	hash	codes)
secures	the	authentication	of	the	transaction	source,	removing	the	need	for	a
central	intermediary.	By	combining	cryptography	and	blockchain,	the	system
ensures	no	duplicate	recording	of	the	same	transaction.

Blockchain	system	design	should	preserve	the	idea	of	decentralized	digital
transaction	processing,	adapting	it	into	a	permissioned	network,	while
centralizing	some	aspects	of	regulatory	compliance	and	maintenance	activity	as
needed	for	an	enterprise	context.

Enterprise	support
Having	enterprise	support	for	blockchain	is	important	for	the	same	reasons	as	the
reconsideration	of	estimation	effort.	Remember	that	blockchain	should	not	be
thought	of	as	just	another	application.	It's	a	production	network	that	involves
risks	and	costs	for	upkeep	and	maintenance,	and	it	won't	be	able	to	simply	use
existing	applications	for	development,	infrastructure,	and	services.

Use	case-driven	pluggability	choices
To	make	sure	your	blockchain	solution	can	allow	for	use	case-driven
pluggability	choices,	consider	the	following	issues.

Shared	ledger	technology
The	use	cases,	design	imperatives,	and	problems	you're	trying	to	address	through
blockchain	will	all	help	determine	the	choice	of	shared	ledger	and	database
technologies.

Consensus
Consensus	guides	the	trust	system	and	drives	technology	investment	in
blockchain	application	infrastructure,	and	therefore	is	at	the	heart	of	blockchain.
Also,	there	isn't	one	consensus	type	that	fits	all	use	cases.	Use	cases	define	the
interaction	between	participants	and	suggest	a	most	appropriate	trust	system
through	consensus	models.

Consensus	is	a	way	to	validate	the	order	of	network	requests	or	transactions
(deploy	and	invoke)	on	a	blockchain	network.	Ordering	network	transactions
correctly	is	critical	because	many	have	a	dependency	on	one	or	more	prior
transactions	(account	debits	often	have	a	dependency	on	prior	credits,	for
example).

In	a	blockchain	network,	no	single	authority	determines	the	transaction	order;
instead,	each	blockchain	node	(or	peer)	has	an	equal	say	in	establishing	the
order,	by	implementing	the	network	consensus	protocol.	Consensus
consequently	ensures	that	a	quorum	of	nodes	agree	on	the	order	in	which
transactions	are	appended	to	the	shared	ledger.	Consensus,	by	resolving
discrepancies	in	the	proposed	transaction	order,	helps	guarantee	that	all	network
nodes	are	operating	on	an	identical	blockchain.	In	other	words,	it	guarantees
both	the	integrity	and	consistency	of	transactions	in	a	blockchain	network.

Crypto	algorithms	and	encryption
technology
Choosing	a	blockchain	system	design	may	be	guided	by	crypto	library	and
encryption	technology	as	well.	An	organization's	use	case	requirements	will
dictate	this	choice	and	drive	technology	investments	in	blockchain	application
infrastructure:

Asymmetric:	RSA	(1024-8192),	DSA	(1024-3072),	Diffie-Hellman,
KCDSA,	Elliptic	Curve	Cryptography	(ECDSA,	ECDH,	ECIES)	with
named,	user-defined,	and	brainpool	curves
Symmetric:	AES,	RC2,	RC4,	RC5,	CAST,	DES,	Triple	DES,	ARIA,	SEED
Hash/message	digest/HMAC:	SHA-1,	SHA-2	(224-512),	SSL3-MD5-
MAC,	SSL3-SHA-1-MAC,	SM3
Random	number	generation:	FIPS	140-2	approved	DRBG	(SP	800-90
CTR	mode)

Use	case-driven	pluggable	choices
As	previously	stated,	use	cases	will	define	the	interaction	between	participants
and	will	suggest	the	most	appropriate	trust	system	using	consensus	models.

Enterprise	integration	and	designing
for	extensibility
Designing	a	blockchain	network	to	coexist	with	existing	systems	of	record	in	an
organization	is	important	as	a	cost	consideration.	Integration	should	be	through
both	business	and	technology	issues,	since	downstream	transaction	systems
impact	essential	business	systems.	By	working	with	many	enterprises,	I've	found
that	integrating	blockchain	with	the	adjacent	systems	has	a	significant	cost
impact	on	their	blockchain	projects.	It	really	needs	to	be	addressed	early	in	the
planning	stages,	so	not	to	adversely	affect	enterprise	adoption.

It's	also	important	to	think	about	operational	issues.	By	safeguarding	the
elements	of	trade,	trust,	and	ownership—and	the	inherent	properties	of
blockchain	such	as	immutability,	provenance,	and	consensus—a	trust	system
promises	to	help	eliminate	redundant	and	duplicate	systems	and	processes.
These	duplications	cost	an	organization	significant	resources,	leading	to	slower
transaction	processing	and	associated	opportunity	costs.	One	goal	with
blockchain	adoption	should	be	to	address	the	central	pain	point	of	the	existing
process.	The	aspiration	is	for	a	transparent	ledger	that	increases	trust,	saves	time
and	significant	costs,	and	provides	better	customer	service.

As	for	network	extensibility,	designing	for	extensibility	means	taking	future
growth	into	consideration	as	you	plan	the	implementation.	Extensibility
measures	a	system's	ability	to	extend	and	the	level	of	effort	that	will	be	required
to	implement	extensions.	Extensibility	is	important	with	blockchain	business
network	design,	not	only	to	accommodate	for	the	dynamic	nature	of	business
(with	all	its	regulations,	competitive	pressures,	and	market	dynamics),	but	also	to
accommodate	for	network	growth	(the	addition	of	regulators,	market	makers,
disruptions,	service	providers,	and	so	on).

The	following	are	some	design	considerations	to	help	ensure	network
extensibility:

Flexibility	with	membership:A	blockchain	network	may	start	with	a	finite
group	of	participants	and	roles,	but	new	participants	could	later	want	to	join

the	network,	and	others	may	want	to	leave.	Therefore,	you	have	to	consider
the	mechanics	of	membership	changes,	including	access	to	(shared)	data.
The	member	type	is	also	an	important	thought	when	designing	for
extensibility,	as	the	roles	and	type	of	members	may	change	over	time.
Compute	equity:	There's	a	split	between	trust	systems	based	on
cryptocurrency	and	trust	systems	based	on	compute	equity,	so	this	is	a	fairly
new	concept.	The	types	of	participants	and	their	business	interests	in	the
network	are	determinants	of	long-term	sustainable	infrastructure	costs	and
maintenance.	For	instance,	cost	models	of	regulators	may	differ	greatly
from	cost	models	of	the	primary	beneficiary	of	a	blockchain-powered
business	network.
Shared	business	interests:	Blockchain	networks	promise	specific
advantages	for	businesses,	such	as	reduced	risk,	a	reliable	and	predictable
transaction	network,	lower	compliance	costs,	and	so	on.	But	these	shared
interests	can	lead	to	other	operational	issues,	such	as	data	sharing	and
ownership	as	entities	join	and	leave	the	network.	Since	regulations	around
data	ownership	evolve,	as	well	as	industry	requirements	for	the	durability	of
data,	these	should	be	evaluated	carefully	when	you	design	a	blockchain
system.
Governance:	Governance	includes	managing	technical	artifacts	such	as
technology	infrastructure	and	governing	data	and	smart	contracts	in	a
blockchain	network.	Layering	governance	in	the	following	categories	is
recommended:

Blockchain	network/technology	governance
Blockchain	data	governance
Blockchain	smart	contract	governance
Blockchain	transaction	management	governance

When	designing	for	extensibility,	the	goal	should	be	to	ensure	that	the
blockchain	network	has	sustainable	operational	elements	and	business	growth
elements.	For	example,	in	a	sustainable	model,	every	participant	could	deploy
the	chaincode	that	governs	its	own	business	process	as	it	accepts	and	deals	with
digital	assets,	while	also	putting	business	participants	in	control	of	changing
business	processes,	policies,	and	regulatory	requirements.

Other	considerations
There	are	a	few	other	considerations	to	keep	in	mind	apart	from	the	previously
mentioned	aspects.	They	are	briefly	explained	in	the	following	sections.

Consensus,	ACID	property,	and	CAP
A	consensus	model	will	never	go	to	0	because	when	NoSQL	became	the
standard,	various	NoSQL	systems	solved	their	problems	by	understanding	this
CAP	theorem,	and	the	RDBMS	enterprise	community	held	steadfast	to	their
ACID	properties.	Blockchain	might	well	provide	the	primitives	to	break	CAP
and	maintain	ACID.	Here	are	some	thoughts.

CAP
Cap	stands	for:

C—Consistency:	Consensus	guarantees	only	one	truth	of	what	happened
and	in	what	order
A—Availability:	The	fact	that	all	calls	to	the	blockchain	are	asynchronous
allows	the	invoking	application	to	make	progress	while	ensuring	consensus
and	durability	(chaining	also	guarantees	this)
P—Network	partition:	Consensus,	again,	prevents	split-brain	with
conflicts	when	things	get	back	together	after	a	network	partition

ACID
ACID	stands	for:

A—Atomicity:	The	chaincode	programming	model	is	an	all-or-nothing
behavior,	which	allows	you	to	group	activities	together.	Either	everything
happens,	or	it	doesn't.
C—Consistency:	We	believe	the	new	world	of	NoSQL	fudges	this	one.	I
believe	this	means	the	same	as	the	C	in	CAP.
I—Isolation:	Isolation	indicates	that	two	transactions	are	serialized,	which
is	exactly	what	block	construction	and	chaining	does.
D—Durability:	The	chaining	and	replication	all	over	the	network	ensures
that	if	one	or	more	nodes	go	down,	data	won't	be	lost.	This	is	why	everyone
wants	to	bring	a	node	and	why	those	nodes	should	not	be	not	co-located.

Attestation	–	SSCs	are	signed	and
encrypted
In	secure	service	containers	(SSCs),	the	software,	operating	system,
hypervisors,	and	Docker	container	images	cannot	be	modified.	Certificates	may
be	included	in	the	SSC	so	that	they	can	probe	themselves	into	being	genuine	to	a
remote	a	party.	For	example,	including	an	SSL	certificate	when	building	SSCs
helps	ensure	that	you're	speaking	with	a	genuine	instance,	since	the	SSL
certificate	always	stays	protected	(encrypted)	within	the	SSC.

Use	of	HSMs
According	to	Wikipedia,	a	hardware	security	module	(HSM)	is	a	physical
computing	device	that	safeguards	and	manages	digital	keys	for	strong
authentication	and	provides	cryptoprocessing.	These	modules	traditionally	come
in	the	form	of	a	plugin	card	or	an	external	device	that	attaches	directly	to	a
computer	or	network	server.

Administering	a	high-security	device	such	as	an	HSM	can	be	a	real	challenge	in
relation	to	sufficient	security	and	controls.	In	fact,	today's	standards	mandate
certain	methods	and	levels	of	security	for	HSM	administrative	(and	key
management)	systems.

https://en.wikipedia.org/wiki/Hardware_security_module

Summary
Adopting	blockchain	in	an	enterprise	will	require	a	balancing	act.	Organizations
will	not	only	have	to	run,	manage,	and	maintain	their	existing	infrastructure;
they'll	also	need	to	help	pave	the	way	for	this	new	computational	model	that
promises	to	bring	transformation.

In	regulated	industries,	organizations	could	face	a	dual	impact	on	the	cost	of
compliance,	since	even	a	new	technology	platform	still	needs	to	adhere	to
established	regulatory	frameworks	and	proven	technology	architecture	standards
and	design.	Enterprises	considering	blockchain	can	look	towards	a	pragmatic
approach	by	adopting	a	doctrine	of	layered	defense,	combining	multiple
mitigating	security	controls	to	help	protect	their	resources	and	data.	With	the
layered	defense	approach,	digital	assets/smart	contracts	as	well	as	ledger	data
will	be	guarded.

Exploring	Hyperledger	Fabric
The	focus	of	this	chapter	is	the	Hyperledger	Fabric	project—its	components,
design,	reference	architecture,	and	overall	enterprise	readiness.	We	will	also
discuss	the	broader	aim	of	Linux	Foundation	(LF)	hosted	Hyperledger	projects
and	the	importance	of	open	source	and	open	standards.	The	goal	is	to	build	an
understanding	of	the	diversity	of	various	Hyperledger	projects,	and	what
frameworks	and	tools	may	be	suitable	for	particular	enterprise	use	cases	and
software	consumption	models.	While	the	blockchain	technology	landscape	is
constantly	in	flux,	Hyperledger	projects	represent	a	structure	that	supports	a
mature	and	peer-reviewed	technology	geared	toward	enterprise	consumption	and
fueled	by	a	diverse	set	of	talent	and	community	interests.

This	chapter	will	cover	the	following	topics:

The	foundation	of	Hyperledger
Hyperledger	frameworks,	tools,	and	building	blocks
Hyperledger	Fabric	component	design
Hyperledger	Fabric	–	the	journey	of	a	sample	transaction
Exploring	Hyperledger	Fabric
Understanding	governance	in	business	networks	powered	by	blockchain

Building	on	the	foundations	of	open
computing
Open	source	projects,	such	as	Linux	and	Java,	have	gained	strength	in
mainstream	businesses	by	serving	as	low-cost	alternatives	to	commercial
software.	These	capabilities	rival	those	of	proprietary	software,	thanks	to	support
from	a	large	developer	community.	Popular	open	source	projects	can	also
accelerate	open	standards,	the	collective	building	blocks	for	products,	by	serving
as	the	common	implementation.	Businesses	and	vendors	using	open	standards
free	up	development	and	services	budgets	for	items	that	offer	higher	value	and
competitive	advantage.

Open	source	is	a	part	of	the	wider	open	computing	movement,	along	with	open
standards	and	open	architecture.	Together,	these	initiatives	enable	integration
and	flexibility,	and	benefit	customers	by	helping	them	avoid	vendor	lock-in.

Enterprises	are	often	required	to	adhere	to	various	industry	compliance	and
technology	governance	requirements,	so	it's	important	to	consider	the
implications	of	open	technology.	While	it	is	a	well-understood	fact	that
blockchain	technology	powers	a	business	network,	the	issues	around	compliance
adherence	and	technology	governance	can	have	an	exponential	impact	on	the
cost	of	technology	consumption,	governance,	and	maintenance.

Community-driven	open	innovation	brings	order	to	the	chaos	by	providing	a
guiding	framework	for	blockchain	networks	around	network-centric	software
provisioning,	deployment,	governance,	and	compliance	models.	Because
blockchain	technology	powers	the	business	network,	any	application	defining
the	network	that	represents	the	business	application	and	therefore	the	impact—
technology	adoption,	costs,	and	complexity—is	also	network	wide.	Therefore,
open	community-driven	technologies	and	open	standards	ought	to	be	viewed	as
a	vehicle	to	risk	management	and	risk	mitigation	with	linkages	to	a	community-
driven	governance	structure.	We	aim	to	discuss	this	at	length	with	a
technological	focus	in	this	chapter.

Fundamentals	of	the	Hyperledger
project
To	start	building	an	understanding	of	Hyperledger,	let's	look	at	some	of	the	key
players	and	fundamental	elements	of	the	Hyperledger	Fabric	space.

The	Linux	Foundation	
The	Linux	Foundation	(LF)	is	a	world	leader	in	supporting	open	technology
development,	and	it	is	highly	esteemed	in	the	developer	community.	LF	is
fostering	partnerships	that	address	some	of	the	world's	biggest	challenges
through	open	source	computing.	It	has	made	enormous	investments	in	open
source	projects	since	it	was	founded	in	2000	and	helped	to	build	an	ecosystem
that	paved	the	way	for	the	technologies	discussed	in	this	book.

Hyperledger
Hyperledger	is	an	open	source	project	that	came	out	of	the	LF	and	was	created	in
order	to	help	advance	cross-industry	blockchain	technologies.	It's	a	global	open
source	collaboration	involving	leaders	from	numerous	industries.

Open	source	and	open	standards
As	noted	previously,	the	open	computing	movement	laid	the	groundwork	for
blockchain	and	Hyperledger.	Open	source	is	a	software	licensing	model.	This
means	that	the	user	has	the	rights	to	the	code	and	is	free	to	use	it,	enhance	it,	or
even	redistribute	it,	provided	this	is	done	on	an	open	source	basis.

One	of	the	major	advantages	of	an	open	source	business	application	is	the	high
level	of	flexibility	provided	through	open	source	code,	modular	components,	and
standards	adherence.	This	enables	an	organization	to	adapt	the	technology	to
achieve	true	usability	with	minimal	effort.	Many	applications	that	are	backed	by
open	source	technologies	can	be	assembled,	like	building	blocks,	to	solve
business	problems.	These	building	blocks	come	with	a	core	set	of	functionalities,
and	each	can	be	enhanced	to	meet	specific	business	requirements.	The	different
building	blocks	are	easily	integrated	through	the	use	of	open-standard
technologies,	and	additional	features	that	can	be	custom	developed	in	a	modular
way.

An	open	source	business	application	can	therefore	provide	a	base	set	of	features
at	a	very	low	cost,	while	enabling	services	engagement	to	enhance	or	tailor	the
application	to	fully	meet	business	needs:

The	open	source	community	also	provides	a	global,	diverse	talent	pool	and
community	with	a	wide	range	of	ideas	and	creativity,	which	generate	more
collaborative	innovation	than	any	single	vendor	ever	could.	It	has	disrupted
markets	and	created	growth	opportunities	for	those	who	recognize	its
advantages.

Open	source	technologies	such	as	Hyperledger	and	its	family	of	projects	provide
the	following	advantages	to	the	industry:

Lower	cost	of	software	consumption:	Open	source	technology-driven
projects	do	involve	costs	associated	with	deployment,	maintenance,
management,	support,	and	so	forth.	The	overall	costs	of	development	and
costs	associated	with	the	talent	pool,	however,	is	largely	reduced.	Linking
the	internal	technology	governance	structure	with	the	community-driven
governance	structure	of	a	Hyperledger	project	can	greatly	reduce	the	costs
of	technology	governance	and	compliance.	The	growing	popularity	of
Hyperledger	projects	represents	the	growth	of	community	participation,
implying	the	availability	of	a	diverse	talent	pool	associated	with
Hyperledger	frameworks	and	tools.	This	is	a	huge	cost	consideration	for
enterprise	business	networks	as	their	requirements	and	business	networks
grow.

Innovation	and	extensibility:	Enterprise	and	business	networks	do	not
have	to	have	the	vendor	locked	in,	but	rather	can	choose	from	the	most
innovative	and	involved	communities,	taking	advantage	of	fast-paced
innovation	in	blockchain	technology	space.	Piggybacking	on	community-
based	innovation	will	only	amplify	the	business	network's	ability	to
leverage	new	technology	and	innovation	from	projects,	and	simplify
business	network	operations	and	governance	costs,	not	to	mention	the	wide
array	of	competing	and	complementing	technology	sets	available,	that
provide	flexibility	in	enterprise	architecture	and	design.
Sustainable	development	and	innovation	stream:	LF	provides
governance	structure	to	the	Hyperledger	community.	Sustainable
development	implies	peer	review	and	regular	software	updates	by	the
community	that	supports	it.	This	enables	a	vehicle	where	business	networks
can	enhance	their	value	proposition	and	create	new	business	models.	In
many	cases,	the	business	network	participants	may	also	represent	the
Hyperledger	community,	leading	to	a	bidirectional	stream	of	innovation,
where	the	business	network	feeds	business	innovation-led	improvements
and	requirements,	with	the	technology	community	accepting	and	enhancing
innovation.
Security	and	reliability:	The	Hyperledger	community	provides	a
community	of	peers	that	review,	debate,	and	collectively	accept	the
technology's	design	and	innovation.	This	LF	provided	governance	structure
assumes	collective	responsibility,	as	Hyperledger	projects	are	implemented

and	maintained	by	a	large	community	of	blockchain	specialists	who	can
find	and	address	a	vulnerability	at	a	much	faster	pace	than	a	vendor	who	is
provided	with	proprietary	software	solutions.	Because	Hyperledger	projects
include	involvement	from	their	members,	who	share	the	costs	of
development	and	governance,	the	Hyperledger	framework	is	reliable,	as	it
is	openly	governed	and	peer	reviewed	by	the	community.
Speeds	up	development	and	market	adoption:	Open	source	projects	such
as	Hyperledger	projects	have	diverse	communities	and	member
organizations	with	common	interests	and	a	dedicated	talent	pool	to
collectively	solve	emerging	problems.	Hyperledger	projects	and	the
communities	behind	them	provide	developers	and	business	networks	the
opportunity	to	contribute	and	consume	software	at	the	pace	of	innovation.
The	speed	of	development	and	market	adoption	is	a	critical	consideration
for	many	business	networks	at	this	stage	of	rapid	technological	innovation
with	respect	to	consensus,	blockchain	databases,	security	frameworks,
encryption,	and	tooling.

Hyperledger	frameworks,	tools,	and
building	blocks
Now	that	we've	looked	at	Hyperledger's	foundations	in	the	open	computing
movement,	as	well	as	its	benefits	for	industry,	let's	talk	about	the	frameworks,
tools,	and	building	blocks	of	Hyperledger.

Hyperledger	frameworks
There	are	five	blockchain	frameworks,	as	follows:

Hyperledger	Iroha:	Iroha,	designed	for	mobile	development	projects,	is
based	on	Hyperledger	Fabric	and	was	contributed	by	Soramitsu,	Hitachi,
NTT	Data,	and	Colu.	It	features	modern,	domain-driven	C++	design	as	well
as	a	new	chain-based	Byzantine	fault	tolerant	consensus	algorithm	called
Sumeragi.
Hyperledger	Sawtooth:	Sawtooth	was	contributed	by	Intel	and	includes	a
novel	consensus	algorithm	that	Intel	came	up	with	that's	called	Proof	of
Elapsed	Time	(PoET).	PoET	aims	to	achieve	distributed	consensus	as
efficiently	as	possible.	Hyperledger	Sawtooth	has	potential	in	many	areas,
with	support	for	both	permissioned	and	permissionless	deployments	and
recognition	of	diverse	requirements.	Sawtooth	is	designed	for	versatility.
Hyperledger	Burrow:	Hyperledger	Burrow,	which	was	contributed	by
Monax	and	Intel	initially,	is	a	modular	blockchain	that	was	client-built	to
the	specification	of	the	Ethereum	Virtual	Machine	(EVM).
Hyperledger	Fabric	(HLF):	Hyperledger	Fabric,	contributed	by	IBM,	is
designed	to	be	a	foundation	for	developing	applications	or	solutions	with	a
modular	architecture.	It	allows	for	plug-and-play	components,	such	as
consensus	and	membership	services,	and	leverages	containers	to	host	smart
contracts	called	chaincode	that	comprise	the	application	logic	of	the
system.	The	remainder	of	this	chapter	will	focus	on	Hyperledger	Fabric	and
its	design,	components,	architecture,	and	overall	enterprise	design.

Hyperledger	Indy:	Contributed	initially	by	the	Sovrin	Foundation,	Indy	is
a	Hyperledger	project	made	to	support	independent	identity	on	distributed
ledgers.	Hyperledger	Indy	provides	tools,	libraries,	and	reusable
components	for	providing	digital	identities	rooted	on	blockchains	or	other
distributed	ledgers:

Hyperledger	tools
There	are	also	five	tools	currently	in	the	Hyperledger	project—all	of	which	are
hosted	by	the	LF.	These	tools	are	as	follows:

Hyperledger	explorer:	Hyperledger	explorer,	which	was	originally
contributed	by	IBM,	Intel,	and	DTCC,	can	view,	invoke,	deploy	or	query
blocks,	transactions	and	associated	data,	network	information	(name,	status,
list	of	nodes),	chain	codes	and	transaction	families,	as	well	as	other	relevant
information	stored	in	the	ledger.

Hyperledger	cello:	Cello	was	also	contributed	by	IBM.	It	seeks	to	bring	the
on	demand	as-a-service	deployment	model	into	the	blockchain	ecosystem
in	order	to	reduce	the	effort	required	to	create,	manage,	and	terminate
blockchains.	Cello	efficiently	and	automatically	provides	a	multi-tenant
chain	service	on	top	of	various	infrastructures,	such	as	bare	metal,	virtual
machine,	and	other	container	platforms.
Hyperledger	composer:	Hyperledger	composer	(contributed	by	IBM	and
Oxchains)	is	a	set	of	collaboration	tools	for	building	blockchain	business
networks	that	accelerate	the	development	of	smart	contracts	and	blockchain
applications,	as	well	as	their	deployment	across	a	distributed	ledger.
Hyperledger	quilt:	Hyperledger	quilt,	from	NTT	data	and	Ripple,	is	a	Java
implementation	of	the	interledger	protocol	by	ripple,	which	is	designed	to
transfer	values	across	distributed	and	non-distributed	ledgers.
Hyperledger	caliper:	Caliper,	a	blockchain	benchmark	tool	that	allows
users	to	measure	performance	of	a	specific	implementation	with	predefined
use	cases,	is	in	incubation	status	and	was	contributed	by	developers	from
numerous	organizations.

The	building	blocks	of	blockchain
solutions
As	noted	in	Chapter	1,	Blockchain	–	Enterprise	and	Industry	Perspective,
blockchain	promises	to	fundamentally	solve	the	issues	of	time	and	trust	in
industries	such	as	financial	services,	supply	chain,	logistics,	and	healthcare.	It
seeks	to	streamline	business	processes	and	thereby	address	inefficiencies.	It's	a
technology	for	a	new	generation	of	transactional	applications	built	on	trust,
accountability,	and	transparency.	There	are	several	characteristics	shared	by
every	industrial	blockchains,	including	the	following:

A	shared	single	source	of	truth
Secure	and	tamper-proof
Private	unlinkable	identity
Scalable	architecture
Confidential
Auditable

The	diagram	that	follows	summarizes	these	characteristics	into	four	tenets:

Blockchain	solutions	are	comprised	of	four	building	blocks—a	shared	ledger,

privacy,	trust,	and	smart	contracts.	Allow	me	to	elaborate	a	bit	on	each	of	these
building	blocks:

Shared	ledger:	With	bitcoin	blockchain,	the	intent	was	to	democratize
visibility;	however,	enterprise	blockchain	requires	a	different	approach	due
to	the	regulation	of	consumer	data.	Append-only	distributed	transaction
records	can	be	achieved	by	SQL	or	no-SQL	distributed	databases.
Privacy	through	cryptography:	Privacy	through	cryptography	is	essential
for	ensuring	that	transactions	are	authenticated	and	verified.	It	is	imperative
to	include	cryptography	in	blockchain	design	for	the	sake	of	hardening
security	and	making	it	more	difficult	to	breach	the	distributed	system.
Considerations	about	cryptography	change	when	you're	working	with	a	less
democratic	or	permissioned	ledger	network.

Trust	systems	or	consensus:	Trust	means	using	the	power	of	the	network
to	verify	a	transaction.	Trust	is	essential	in	any	blockchain	system	or
application,	and	I	prefer	the	term	trust	system	over	consensus	system	since
trust	is	the	foundational	element	that	dictates	a	stakeholder's	investment	in
any	blockchain	infrastructure.	The	trust	system	is	modified	whenever	new
entrants	come	into	the	blockchain	space	and	apply	blockchain	technology	to
a	new	use	case	or	specialization.	The	trust	model	is	truly	the	heart	of
blockchain—it's	what	delivers	the	tenets	of	trust,	trade,	and	ownership.
Trust	is	what	enables	blockchain	to	displace	the	transaction	system,	but	this
can	only	happen	when	trade	and	ownership	are	addressed	by
distributed/shared	ledgers.	There's	still	much	work	needed	to	define	an
optimized	trust	system	for	various	use	cases.	Database	solutions	are	in	the
works	to	address	scale	and	mobile	use	cases,	but	more	work	is	require
around	P2P	and	sharing	economy	models,	as	well	as	B2B	models.
Smart	contracts:	In	the	context	of	blockchain,	a	smart	contract	is	a
business	agreement	embedded	into	the	transaction	database	and	executed
with	transactions.	Rules	are	needed	in	business	to	define	the	flow	of	value
and	state	of	a	transaction,	so	that's	the	function	of	the	contract	here.	The
contract	is	smart	because	it's	a	computerized	protocol	to	execute	the	terms
of	the	contract.	Various	contractual	clauses	(such	as	collateral,	bonding,
delineation	of	property	rights,	and	so	forth)	can	be	codified	so	as	to	enforce
compliance	with	the	terms	of	the	contract	and	ensure	a	successful
transaction—this	is	the	basic	idea	behind	smart	contracts.	Smart	contracts
are	designed	to	reassure	one	party	that	the	other	will	fulfill	their	promise.
Part	of	the	objective	of	such	contracts	is	to	reduce	the	costs	of	verification

and	enforcement.	Smart	contracts	must	be	observable	(meaning	that
participants	can	see	or	prove	each	other's	actions	pertaining	to	the	contract),
verifiable	(meaning	that	participants	can	prove	to	other	nodes	that	a
contract	has	been	performed	or	breached),	and	private	(meaning	that
knowledge	of	the	contents/performance	of	the	contract	should	involve	only
the	necessary	participants	required	to	execute	it).	Bitcoin	made	provisions
for	smart	contracts;	however,	it	lacked	some	capabilities	such	as	Turing-
completeness,	lack	of	state,	and	so	on.	Ethereum	improved	upon	bitcoin's
limitations	by	building	a	blockchain	with	a	built-in	Turing-complete
programming	language,	so	that	anyone	can	write	smart	contracts	and
decentralized	applications	by	creating	their	own	arbitrary	rules	for
ownership,	transaction	formats,	and	state	transition	functions.	These
advances	made	it	possible	for	complex	contracts	to	be	codified	in	a
blockchain,	such	as	instant	transfer	of	credit	to	a	traveler's	bank	account
when	a	flight	is	delayed	beyond	a	certain	duration	or	payment	of	employee
compensation	if	performance	goals	are	achieved.
How	does	this	work	practically?	Well,	smart	contracts	are	deployed	as	code
on	the	blockchain	nodes,	which	we	might	more	appropriately	call	smart
contract	code.	This	code	is	a	way	of	using	blockchain	technology	to
complement,	or	replace,	existing	legal	contracts.	This	smart	contract	code	is
deployed	on	the	blockchain	node	in	a	programming	language	such	as
Solidity	or	Go	lang.	Deploying	the	code	on	the	blockchain	provides	three
important	properties:

Permanence	and	censorship	resistance	inherited	from	the	blockchain,
The	ability	of	the	program	itself	to	control	blockchain	assets,	such	as
by	transferring	ownership	or	quantities	of	an	asset	among	participants
Execution	of	the	program	by	the	blockchain,	ensuring	that	it	will
always	execute	as	written	and	no-one	can	interfere

In	the	enterprise	world,	smart	contracts	would	probably	involve
blockchain's	smart	contract	code,	accompanied	by	a	more	traditional
legal	contract.	For	example,	a	smart	contract	code	may	execute	on	a	land
registry	blockchain	network	to	transfer	ownership	of	a	house	from	one
party	to	another,	so	that	land	registry	records	are	updated	in	real	time	and
all	participants	such	as	the	city,	realtors,	lawyers,	and	banks	can	all
update	their	own	records	upon	completion	of	the	sale.	However,	the
home	buyer	will	insist	on	a	legal	contract	with	indemnity	clauses	to	cover
any	undiscovered	liens.

Hyperledger	Fabric	component
design
Let's	discuss	various	components	that	facilitate	the	blockchain	technology	tenets
of	shared	ledger,	encryption,	the	trusts	system,	and	smart	contracts.	The
components	represent	the	Hyperledger	Fabric	infrastructure	components	and
provide	isolation	from	chain	code	or	smart	contract	development	constructs.
Chain	code	or	smart	contract	development	details	will	be	discussed	in	detail	in	a
separate	chapter.

The	following	diagram	depicts	the	Hyperledger	Fabric	infrastructure
components:	

Hyperledger	Fabric	infrastructure	components

Following	are	the	infrastructure	components:

Hyperledger	Fabric	CA	is	an	implementation	of	membership	services	but
is	not	required	to	be	used	(that	is,	any	X509-based	PKI	infrastructure	that
can	issue	EC	certificates	can	be	used)
Dedicated	orderer	nodes

Implements	atomic	broadcast	API
Orders	and	batches	transactions	and	signs	each	batch	(block)	to	create

a	hash	chain
Hyperledger	Fabric	provides	two	implementations—Solo	(for	dev/test)
and	a	Kafka-based	implementation	for	production/fault	tolerance
The	ordering	service	is	pluggable—the	implementer	needs	to	only
provide	an	atomic	broadcast	API	based	on	the	gRPC	interface
definition

Peers	are	now	responsible	for	existing	smart	logic	(chaincode)	and
maintaining	the	ledger

Endorsement	simulates	transactions	(that	is,	it	executes	them,	but	does
not	commit	them)
Peers	receive	batches	of	endorsed	transactions	from	the	orderer	nodes
and	then	validate	and	commit	transactions	(this	eliminates	non-
determinism)

Principles	of	Hyperledger	design
Hyperledger	Fabric,	again,	is	a	blockchain	implementation	that	is	designed	for
deploying	a	modular	and	extensible	architecture.	It	has	a	modular	subsystem
design	so	that	different	implementations	can	be	plugged	in	and	implemented
over	time.	This	section	covers	the	Hyperledger	Fabric	reference	architecture	and
describes	the	details	on	the	various	components/modules	and	their	interactions
and	functions.	Understanding	the	reference	architecture	facilitates	better	solution
and	technology	design	decisions,	especially	around	scalability,	security,	and
performance.

While	in	this	book	we	will	discuss	the	reference	architecture	of	Hyperledger
Fabric,	please	note	that	all	the	Hyperledger	projects	(the	frameworks	referred	to
previously)	follow	a	design	philosophy	that	includes	the	following	principles:

Modular	and	extensible	approach:	This	implies	modularity	in	all
components	of	all	frameworks.	Components	defined	by	Hyperledger	for	all
projects	include	(but	are	not	limited	to)	the	following:

Consensus	layer
Smart	contract	(chain	code)	layer
Communication	(gossip)	layer
Data	store	(persistent,	log,	and	ledger	data)
Identity	services	(root	of	trust—to	identify	the	participants)
APIs
Pluggable	cryptography

Interoperability:	This	principle	is	around	backward	interoperability	and
NOT	the	interoperability	between	the	various	Hyperledger	project-powered
blockchain	systems	or	business	networks.
Focus	on	secure	solutions:	Enterprise	and	therefore	business	network
security	is	paramount,	hence	the	focus	on	security-and	not	just	of	the	crypto
abstraction-but	the	interaction	between	components	and	the	structure	that
governs	the	permissioning	nature	of	permissioned	blockchains.	Most
industries	embarking	on	the	permissioned	blockchain	are	established	and
regulated	industries.
Token	(or	coin	or	crypto-asset)	agnostic	approach:	This	is	discussed	in
great	length	in	the	governance	section,	but	Hyperledger	projects	do	not	use

crypto-assets,	cryptocurrency,	tokens,	or	coin-like	constructs	as	incentive
mechanics	to	establish	trust	systems.	While	there	is	a	notion	of	asset
tokenization	that	represents	a	physical,	virtual,	or	dematerialized	asset,
tokenization	of	assets	is	a	vastly	different	concept	than	a	systemic	token
that	is	generated	in	the	system	as	a	virtualization	of	incentive	economics.
Focus	on	rich	and	easy-to-use	APIs:	The	focus	here	is	to	ensure	that
blockchain	systems	have	not	only	enterprise	middleware	access,	but	access
to	business	networks,	existing	participants,	and	new	systems	without
exposing	the	details	of	blockchain	powered	business	networks.

CAP	Theorem
The	CAP	Theorem	as	postulated	by	Eric	Brewer	in	2000	at	ACM	Symposium	on
Principles	of	distributed	computing	(PODC)	(https://dl.acm.org/citation.cfm?id=3435
02)	states	that	in	a	distributed	data	store	it	is	impossible	to	guarantee	more	than
any	two	of	the	following	three	properties:	Consistency	(C),	Availability	(A),	and
Partition	Tolerance	(P).	A	distributed	data	store	thus	can	be	characterized	on	the
two	properties	it	guarantees	namely		CA,	CP	or	AP.

More	specifically,	the	theorem	is	aimed	at	distributed	systems	deployed	across
unreliable	networks	(networks	with	faults	and	delays	such	as	the	Internet)
leading	to	a	partitioning	of	the	system	components.	According	to	CAP,	in	these
environments,	the	system	design	must	focus	on	the	balance	between	availability
and	consistency.	For	example,	the	ACID	(Atomicity,	Consistency,	Isolation,
Durability)	approach	typically	provided	by	RDBMS	(Relational	Database
Management	Systems)	guarantees	consistency	on	a	single	node	on	the	expense
of	availability	across	multiple	nodes	(CP	type	of	systems).	However,	note	that,
different	configurations	may	yield	different	combinations	namely	CA	or	AP	as
well.

In	contrast,	Fabric	is	designed	similarly	as	many	other	Blockchain	platforms	as
AP	type	of	system	with	Eventual	Consistency	also	referred	to	as	BASE
(Basically	Available,	Soft	state,	Eventual	consistency).

In	context	of	blockchain	CAP	properties	can	be	defined	as	following:

Consistency:	The	blockchain	network	avoids	any	forks	of	the	ledger
Availability:	Transactions	submitted	by	clients	are	permanently	committed
into	the	ledger	and	available	on	all	the	network	peers
Partition	tolerance:	The	blockchain	network	continues	to	operate	despite
an	arbitrary	number	of	transaction	proposals	or	blocks	are	being	dropped
(or	delayed)	by	the	physical	network	medium	between	the	peers

Fabric	achieves	the	CAP	properties	as	follows:

Consistency:	By	a	total	order	of	transactions	and	version	control	using

https://dl.acm.org/citation.cfm?id=343502

MVCC
Availability:	By	hosting	a	copy	of	the	ledger	on	each	of	the	peers
Partition	tolerance:	By	maintaining	operation	despite	failed	nodes	(up	to	a
threshold)

As	you	can	see,	availability	and	partition	tolerance	(AP	properties	of	the	CAP
theorem)	are	guaranteed	by	default	in	most	blockchain	systems.	However,
consistency	is	harder	to	provide.

Fabric	achieves	consistency	by	combining	the	following	elements:

The	transaction	processing	is	split	into	a	sequence	of	steps	across	multiple
components	of	the	network.
Clients	connect	to	a	communication	channel	and	submit	transaction
proposals	to	endorsing	peers	and	then	to	the	ordering	service.
The	ordering	service	orders	transactions	into	blocks	with	a	total	order	i.e.
the	order	of	the	transactions	is	guaranteed	to	be	consistent	across	the	whole
network.	The	blocks	once	created	are	broadcasted	to	each	member	peer	of
the	channel.	The	broadcasting	protocol	guarantees	reliable	delivery	of	the
blocks	to	the	peers	in	a	correct	order	namely	total-order	broadcast.
As	we	will	explain	in	Multiversion	concurrency	control,	upon	reception	of
the	block	on	the	peer,	the	peer	uses	MVCC	to	validate	each	transaction
based	on	the	key	versions	stored	in	the	transaction	ReadSet.	The	MVCC
validation	guarantees	consistency	of	the	resulting	ledger	and	of	the
Worldstate	and	prevents	attacks	such	as	double	spending.	However,	it	can
also	lead	to	elimination	of	otherwise	valid	transactions,	which	have	been
submitted	in	an	order	violating	the	ReadSet	version	validation	check.	The
transactions	are	then	marked	either	valid	or	invalid	in	the	ledger.
The	ledger	then	contains	a	sequence	of	totally	ordered	blocks,	where	each
block	contains	a	sequence	of	totally	ordered	transactions	(either	valid	or
invalid),	yielding	a	ledger	imposing	a	total	order	across	all	transactions.

Hyperledger	Fabric	reference
architecture
Hyperledger	Fabric	follows	a	modular	design,	and	the	following	are	some	of	the
possible	components	or	modules	that	can	be	plugged	in	and	implemented.	Note
that	this	list	is	not	exhaustive:

Membership	services:	This	module	is	essentially	a	permissioning	module
and	acts	as	a	vehicle	to	establish	a	root	of	trust	during	network	creation,	but
this	is	also	instrumental	in	ensuring	and	managing	the	identity	of	members.
Membership	services	are	essentially	a	certificate	authority	as	well	as
utilized	elements	of	the	public	key	infrastructure	(PKI)	for	things	such	as
key	distribution,	management,	and	establishing	federated	trust	as	the
network	grows.	The	membership	services	module	provides	a	specialized
digital	certificate	authority	for	issuing	certificates	to	members	of	the
blockchain	network,	and	it	leverages	cryptographic	functions	provided	by
Hyperledger	Fabric.
Transactions:	A	transaction	is	a	request	to	the	blockchain	to	execute	a
function	on	the	ledger.	The	function	is	implemented	by	a	chaincode.
Cryptography	ensures	integrity	of	transactions	by	linking	the	transaction	to
previous	blocks	and	ensuring	the	transactional	integrity,	if	protected,	by
linking	the	cryptogram	or	hash	from	previously	linked	blocks.	Each	channel
in	Hyperledger	Fabric	is	its	own	blockchain.
Smart	contract	or	chaincode	services:	Chaincode	is	an	application-level
code	stored	on	the	ledger	as	a	part	of	a	transaction.	Chaincode	runs
transactions	that	may	modify	the	world	state.	Transaction	logic	is	written	as
chaincode	(in	the	Go	or	JavaScript	languages),	and	executes	in	secure
Docker	containers.	The	transaction	transforms	data,	scoped	by	chaincode
on	the	channel	from	which	it	operates.

Here	are	the	smart	contract	or	chaincode	elements	enabled	by	chaincode
services.	Chaincode	is	installed	on	peers,	which	require	access	to	the	asset	states
to	perform	reads	and	writes.	The	chaincode	is	then	instantiated	on	specific
channels	for	specific	peers.	Ledgers	within	a	channel	can	be	shared	across	entire
networks	of	peers	or	include	only	a	specific	set	of	participants.	Peers	are	able	to

participate	in	multiple	channels:

Events:	The	process	of	validating	peers	and	chaincodes	can	produce	events
(pre-defined	events	and	custom	events	generated	by	chaincode)	on	the
network	that	applications	may	listen	for	and	take	actions	on.	These	events
are	consumed	by	event	adapters,	which	may	further	deliver	events	using
vehicles	such	as	WebHooks	or	Kafka.	Fabric-committing	peers	provide	an
event	stream	to	publish	events	to	registered	listeners.	As	of	v1.0,	the	only
events	that	get	published	are	Block	events.	A	Block	event	gets	published
whenever	the	committing	peer	adds	a	validated	block	to	the	ledger:

Consensus:	Consensus	is	at	the	heart	of	any	blockchain	system.	It	also
enables	a	trust	system.	In	general,	the	consensus	service	enables	digitally
signed	transactions	to	be	proposed	and	validated	by	network	members.	In
Hyperledger	Fabric,	the	consensus	is	pluggable	and	tightly	linked	to	the
endorse-order-validation	model	that	Hyperledger	proposes.	The	ordering
services	in	Hyperledger	Fabric	represent	the	consensus	system.	The
ordering	service	batches	multiple	transactions	into	blocks	and	outputs	a
hash-chained	sequence	of	blocks	containing	transactions.
Ledger:	Another	component	is	a	distributed	encrypted	ledger,	including	an
append-only	data	store.	This	provides	the	ability	to	query	and	write	data
across	distributed	ledgers.	There	are	two	options:

Level	DB	(default	embedded	KV	DB)	supports	keyed	queries,
composite	key	queries,	and	key	range	queries
Couch	DB	(external	option)	supports	keyed	queries,	composite	key
queries,	key	range	queries,	plus	full	data	rich	queries

Client	SDK:	A	client	SDK	enables	the	creation	of	applications	that	deploy

and	invoke	transactions	atop	a	shared	ledger.	The	Hyperledger	Fabric
Reference	Architecture	supports	both	Node.js	and	Java	SDK.	A	software
developer	kit	is	like	a	programming	kit	or	set	of	tools	that	provide
developers	with	the	environment	of	libraries	to	write	and	test	chaincode
applications.	SDKs	are	critical	in	blockchain	application	development	and
will	be	discussed	in	detail	in	further	chapters.	Specific	capabilities	included
in	the	SDK	are	the	application	client,	chaincode,	users,	events,	and	crypto
suite.

Hyperledger	Fabric	runtime
architecture
Now	that	we've	looked	at	the	reference	architecture,	let's	consider	the	runtime
architecture	for	Hyperledger	Fabric:

	

The	following	outline	demonstrates	a	Hyperledger	Fabric	runtime	transaction
processing	flow:

Transaction	proposal	(application	SDK):
1.	 Transaction	proposal	is	submitted	by	application	SDK
2.	 It	receives	a	transaction	proposal	response	back	(includes

ReadWrite	set)	post	endorsement
3.	 It	submits	the	transaction	(includes	ReadWrite	set)	to	the	ordering

service
Transaction	endorsement:
1.	 The	transaction	is	sent	to	the	counter-parties	represented	by	endorsing

peers	on	their	channel
2.	 Each	peer	executes	the	transaction	by	calling	the	specified	chaincode

function	and	signs	the	result,	which	becomes	the	read-write-set	of	the
transaction

3.	 Each	peer	may	participate	in	multiple	channels,	allowing	concurrent
execution

Transaction	submitted	to	the	ordering	service:
1.	 The	ordering	service	accepts	endorsed	transactions	and	orders	them

according	to	the	plug-in	consensus	algorithm,	and	then	delivers	them
on	the	channel

2.	 Peers	on	the	channel	receive	transactions	and	validate	before
committing	to	the	ledger

Transaction	validation:
1.	 Validates	each	transaction	and	commit	block
2.	 Validates	the	endorsement	policy
3.	 Validates	ReadSet	versions	in	state	DB
4.	 Commits	the	block	to	blockchain
5.	 Commits	the	valid	transaction	to	state	DB

Strengths	and	advantages	of
componentized	design
Hyperledger	Fabric's	component	design	offers	several	advantages.	Many	of	these
strengths	relate	to	business	network	governance,	which	is	an	important
compliance	and	costs	consideration	for	Hyperledger	Fabric	in	the	enterprise.

These	benefits	include	the	following:

Delineates	development	design	from	runtime	design:	Separating
development	and	runtime	design	is	important	because	the	delineation	is
important	from	development	best	practices	and	infrastructure/hybrid	cloud
variations,	and	ensuring	adherence	to	the	current	enterprise	and	their
connectivity	to	the	business	network's	application	development,	as	well	as
DevOps	practices.
Discerning	between	design	imperatives	and	infrastructure/deployment
capabilities:	Componentized	design	allows	us	to	separate	infrastructure
design,	which	includes	things	such	as	network	connections,	security,
permissioning,	and	contractual	vehicles,	from	the	overall	application	design
of	the	business	network	blueprint	that	dictates	the	technology	blueprint.

Incorporates	network	design	principles:	The	modularity	of	Hyperledger
Fabric	can	address	infrastructure	scaling	issues,	such	as	the	number	of
connections,	co-location,	security,	container	deployment	practices,	and	so
on.	There	are	various	considerations	when	it	comes	to	network	design,	such
as	cloud	deployment,	hybrid	and/or	on	premises,	and	a	combination	of	any
of	the	available	options,	which	are	dependent	on	the	requirements	of
individual	members	in	a	business	network.	Network	design	also	addresses
the	business	challenges	of	network	growth	and	the	resulting	performance
and	security	driven	Service	Level	Agreements	(SLA)	to	its	members.
Addresses	channel	design	principles:	Modularity,	or	componentized
design,	can	also	address	isolation,	data	privacy,	and	confidentiality	between
participants	and	controlled/permissioned	access	with	robust	audit	capability.
Channel	constructs	in	Hyperledger	Fabric	enable	us	to	address	the	business
blueprint	requirements	around	implementing	business-defined	transactions

that	may	be	bilateral,	trilateral,	or	event	multilateral.	Channels	also	provide
an	avenue	to	limit	the	visibility	of	transaction	data	to	a	few	participants	or
provide	full	access	when	required,	such	as	to	a	regulator.	Channel	design
also	addresses	critical	business	requirements	around	transaction	processing,
data	visibility,	business	rules	enforcement,	and	so	on.	It	also	has	technology
implications,	such	as	a	scalability,	security,	and	the	costs	of	the
infrastructure	that	supports	the	business	network.	Finally,	channel	design
addresses	the	business	challenges	of	network	growth	and	the	resulting
performance	and	security-driven	SLAs	to	members.
Adopts	Hyperledger	Fabric	composer	model-driven	development:
Hyperledger	Composer,	one	of	the	tools	discussed	previously	under
Hyperledger	tools,	provides	an	avenue	to	modular	development	with	a
portable,	standardized	vehicle	to	add	governance	and	control,	similar	to	JEE
constructs	such	as	JAR/WAR/RAR,	and	so	on.	Business	network	archive
(BNA)	is	an	archive	that	can	be	integrated	into	DevOps	practices	for	cross-
enterprise	team	development	and	collaborative	life	cycle	management
capabilities.	The	idea	is	to	separate	chaincode	development	from
infrastructure	design	and	separate	the	competencies	needed	to	maintain	the
two	facets	of	enterprise	or	business	network	application	technology
practices.	More	details	around	Hyperledger	Fabric	composer	will	be
discussed	in	a	separate	chapter	dedicated	to	the	composer	and	tooling.

Each	of	the	advantages	of	componentized	design	described	previously	have	cost
implications	in	terms	of	runtime/infrastructure	design	(that	is,	use	of	resources
and	resulting	costs),	flexible	design	(such	as	products	and	relationships	morphs),
and	the	longevity	of	the	solution	(the	global	footprint	of	the	enterprise	cloud
infrastructure,	including	robust	access	to	technical	and	business	SMEs	in	the
form	of	maintenance	and	support)—all	of	which	are	essential	for	compliance,
governance,	and	longevity	of	the	solution,	and	resulting	business	networks
powered	by	blockchain.

Hyperledger	Fabric	–	the	journey	of	a
sample	transaction
Now,	let's	look	at	the	journey	of	a	sample	transaction	with	Hyperledger	Fabric.
This	section	will	help	lay	the	foundation	of	Hyperledger	Fabric	concepts	and
components	in	order	to	facilitate	a	better	understanding	of	the	layers	involved	in
transaction	processing:

Hyperledger	Fabric	walkthrough

Fabric	introduces	a	newly	designed	blockchain,	preserving	the	transaction
processing	architecture	and	aiming	at	a	secure,	scalable,	resilient,	modular,	and
confidential	design.	Hyperledger	Fabric	(at	the	time	of	writing	this	book,	the
current	version	is	1.1)	supports	the	execution	of	distributed	applications
supporting	enterprise-friendly	programming	models.	The	components	in
Hyperledger	Fabric	provide	a	modular	design,	optimally	suited	for	a	business
network	made	of	various	enterprises.	Hyperledger	Fabric	introduces	a	model

based	on	three	steps,	an	endorse-order-validate	architecture,	designed	for	the
distributed	execution	of	untrusted	code	in	an	untrusted	environment.	This
separation	not	only	allows	for	provisioning	at	scale,	but	also	ensures	security	by
separation	at	every	layer.

The	transaction	flow	is	separated	into	three	steps,	which	may	be	run	on	different
entities	in	the	system:

1.	 Endorsement	of	a	transaction	and	checking	its	validity	(validation
step):	This	step	includes	members	of	a	channel	to		inspect	and	adhere	to	
endorsement	policies	which		define	the	acceptable	agreed	upon	approach	to
validate	a	transaction	proposal.	Since	peers	need	to	update	the	ledger	(upon
transaction	finality)	the	peers	(that	are	subscribed	to	a	channel)	review	the
proposal	and	provide	their	ledgers	version	of	(R)ead	and	(W)rite	set.	This
validation	step	is	vital	as	it	provides	the	first	step	on	transaction	validation.
This	check	also	acts	as	a	gate	and	prevents	form		erroneous	downstream
processing	of	transaction,	which	can	be	computationally	expensive.

2.	 Ordering	through	an	ordering	service:	This	is	a	consensus	protocol
which	is	meant	to	be	pluggable,	irrespective	of	transaction	semantics.	The
pluggability	of	the	consensus	provides	enterprise	and	business	networks
with	tremendous	flexibility,	as	there	are	consensus	mechanism
considerations	for	various	types	of	industries,	use	cases,	and	interactions
between	network	participants.

3.	 Validation	or	transaction	commitment:	This	implies	committing	a
transaction	and	therefore	going	through	a	final	set	of	validations	per
application-specific	trust	assumptions.

A	Hyperledger	Fabric	transaction	involves	three	types	of	nodes:

The	committing	peer	is	the	node	that	maintains	the	ledger	and	state.	The
committing	peer	is	the	party	that	commits	transactions	and	may	hold	the
smart	contract	or	chaincode.
The	endorsing	peer	is	a	specialized	committing	peer	that	can	grant	or	deny
endorsement	of	a	transaction	proposal.	The	endorsing	peer	has	to	hold	the
smart	contract.

The	ordering	nodes	(service)	communicate	with	the	committing	and	peer
nodes;	their	main	function	is	to	approve	the	inclusion	of	transaction	blocks
into	the	ledger.	Unlike	the	committing	peer	and	endorsing	peer,	the	ordering

nodes	do	not	hold	the	smart	contract	or	the	ledger.

Validation	can	be	divided	into	two	roles,	endorsement	and	ordering:

Endorsing	a	transaction	means	verifying	that	it	obeys	a	smart	contract;
endorsers	sign	the	contract	to	complete	this	aspect	of	validation
Ordering	verifies	transactions	for	inclusion	in	the	ledger;	this	form	of
validation	helps	to	control	what	goes	in	the	ledger	and	ensure	its
consistency

What	about	chain	code	invocation?	In	a	Hyperledger	Fabric	transaction,
simulation	(chaincode	execution)	and	block	validation/commit	are	separate.

There	are	three	phases	involved	in	carrying	out	a	chaincode	operation	(in	other
words,	a	business	transaction)	with	Hyperledger	Fabric:

1.	 The	first	phase	is	chaincode	operation	execution	through	simulation	on
endorsing	peers.	It's	possible	to	enable	parallel	simulation	on	endorsers	to
help	improve	concurrency	and	scalability	since	simulation	won't	update	the
blockchain	state.

2.	 Next,	simulation	determines	the	business	transaction	proposal,	that	is,	the
read	set/write	set,	and	broadcasts	this	to	the	ordering	service.

3.	 A	transaction	proposal	is	then	ordered	in	regard	to	others	and	broadcasts	to
committing	peers	(includes	endorsing	peers)	who	validate	that	its	read	set
has	not	been	modified	since	simulation	and	applies	its	write	set
automatically.

Channels	are	also	an	important	aspect	of	the	transaction	journey,	since	peers
exchange	messages	using	consensus	by	way	of	channels,	and	they	ensure
privacy	between	different	ledgers.	The	following	are	a	few	notes	regarding
channels:

They	don't	have	to	be	connected	to	by	all	nodes
Peers	connect	to	channels	through	an	access	control	policy
The	ordering	services	orders	a	transaction	broadcast	to	a	channel
Peers	receive	transactions	in	exactly	the	same	order	for	a	channel

Transactions	are	delivered	in	cryptographically	linked	blocks
Every	peer	validates	the	delivered	blocks	and	commits	them	to	the	ledger

Hyperledger	Fabric	explored
Actors	in	the	blockchain	network:	A	blockchain	is	a	network-based
infrastructure	where	network-centric	design,	development,	deployment,
management,	and	support	constructs	apply.	It	is	therefore	vital	to	understand
various	actors	and	their	roles	that	interact	with	the	blockchain	network	for
various	purposes	such	as	management,	support,	business	users,	regulator,	and	so
on:

Each	actor	has	a	role	and	entry	point	and	defines	a	governance	structure	that	aids
in	network	governance,	audit,	and	compliance	requirements.	Business	network
governance	(covered	in	detail	in	the	following	points)	is	an	important
compliance	and	costs	consideration.	Users	are	the	parties	who	are	users	of	the
blockchain.	They	create	and	distribute	blockchain	applications	and	perform
operations	using	the	blockchain.	These	actors	are	consistent,	and	are	based	on
cloud	computing	actors	and	roles	from	ISO/IEC	17788:

Developers:	Blockchain	developers	are	the	actors	who	create	applications
for	users	(client-side)	and	develop	the	smart	contracts	(server-side)	that
interact	with	the	blockchain,	which	are	then	used	by	blockchain	users	to

initiate	transactions.	They	also	write	code	to	enable	the	blockchain	to
interact	with	legacy	applications.
Administrators:	Blockchain	administrators	perform	administrative
activities,	such	as	deployment	and	configuration	of	the	blockchain	network
or	application.
Operators:	Blockchain	operators	are	responsible	for	defining,	creating,
managing,	and	monitoring	the	blockchain	network	and	application.
Auditors:	Blockchain	auditors	have	the	responsibility	of	reviewing
blockchain	transactions	and	validating	their	integrity	from	a	business,	legal,
audit,	and	compliance	perspective.
Business	users:	This	term	refers	to	users	operating	in	a	business	network.
They	interact	with	the	blockchain	using	an	application,	but	may	not	be
aware	of	the	blockchain	since	it	will	be	an	invisible	transactional	system.

Components	in	a	blockchain	network
In	general,	a	blockchain	system	consists	of	a	number	of	nodes,	each	of	which	has
a	local	copy	of	a	ledger.	In	most	systems,	the	nodes	belong	to	different
organizations.	The	nodes	communicate	with	each	other	in	order	to	gain
agreement	on	what	should	be	in	the	ledger.

The	process	of	gaining	this	agreement	is	called	consensus,	and	there	are	a
number	of	different	algorithms	that	have	been	developed	for	this	purpose.	Users
send	transaction	requests	to	the	blockchain	in	order	to	perform	the	operations	the
chain	is	designed	to	provide.	Once	a	transaction	is	completed,	a	record	of	the
transaction	is	added	to	one	or	more	of	the	ledgers	and	can	never	be	altered	or
removed.	This	property	of	the	blockchain	is	called	immutability.	Cryptography
is	used	to	secure	the	blockchain	itself	and	the	communications	between	the
elements	of	the	blockchain	system.	It	ensures	that	the	ledger	cannot	be	altered,
except	by	the	addition	of	new	transactions.	Cryptography	provides	integrity	on
messages	from	users	or	between	nodes	and	ensures	operations	are	only
performed	by	authorized	entities:

The	authority	to	perform	transactions	on	a	blockchain	can	use	one	of	two
models:	permissioned	or	permissionless.	In	a	permissioned	blockchain,	users

must	be	enrolled	in	the	blockchain	before	they	are	allowed	to	perform
transactions.	The	enrollment	process	gives	the	user	credentials	that	are	used	to
identify	the	user	when	they	perform	transactions.	In	a	permissionless	blockchain,
any	person	can	perform	transactions,	but	they	are	usually	restricted	from
performing	operations	on	any	data	but	their	own.	Blockchain	owners	developed
an	executable	software	module	called	a	smart	contract,	which	is	installed	into
the	blockchain	itself.	When	a	user	sends	a	transaction	to	the	blockchain,	it	can
invoke	a	smart	contract	module,	which	performs	functions	defined	by	the	creator
of	the	smart	contract	module.

Developer	interaction
As	discussed	in	the	introduction	of	Hyperledger	Fabric	Explored	section,
blockchain	developers	can	have	many	roles	including	creating	applications	for
users	(client-side)	and	developing	smart	contracts.	Developers	also	write	code	to
enable	the	blockchain	to	interact	with	legacy	applications:

A	blockchain	developer's	primary	role	is	to	create	an	application	(and
integration)	and	Smart	Contracts	and	their	respective	interaction	with	ledgers
and	other	enterprise	systems	of	the	business	network	and	their	participants.	Due
to	the	separation	of	the	Hyperledger	Fabric	infrastructure,	there	is	a	clear
separation	between	infrastructure	constructs,	such	as	peers,	consensus,	security,
channels,	policies,	and	developer-led	activities,	such	as	smart	contract
development,	deployment,	enterprise	integration,	API	management,	and	front
end	application	development.

From	a	developer's	point	of	view,	the	following	outline	represents	an	example	of
developer	interaction	with	Hyperledger	Fabric	constructs:

The	developer	creates	an	application	and	a	smart	contract

The	application	can	invoke	calls	within	the	smart	contract	through	an	SDK
The	calls	are	processed	by	the	business	logic	built	into	the	smart	contract
through	various	commands	and	protocols:

A	put	or	delete	command	will	go	through	the	selected	consensus
protocol	and	will	be	added	to	the	blockchain
A	get	command	can	only	read	from	the	world	state	but	is	not	recorded
on	the	blockchain

An	application	can	access	block	information	using	rest	APIs	such	as	get
block	height

Note	the	use	of	delete	here—delete	can	delete	keys	from	the	world	state
database,	but	not	transactions	from	the	blockchain,	which	we've	already
established	are	immutable.

The	following	diagram	summarizes	all	key	roles:

Understanding	governance	in
business	networks	powered	by
blockchain
Governance	can	be	defined	as	the	centralized	or	decentralized	body	whose	sole
responsibility	is	establishing	a	set	of	rules	or	laws	in	a	given	system	to	make
binding	decisions.	Governance	in	blockchain	networks	comes	with	a	set	of
challenges	and,	in	this	section,	we	want	to	discuss	those	challenges	along	with
governance	structures	in	blockchain	networks.	Within	the	context	of	blockchain,
the	topic	of	governance	presents	an	interesting	paradox.

When	a	blockchain	network	is	created,	the	governance	structure	is	generally
distributed,	with	input	from	the	various	stakeholders.	Blockchain	networks	are
characterized	by	decentralization	and	self-governance,	with	built-in	control
points	and	incentives	to	help	maintain	the	right	balance.	Transactions	go	through
a	series	of	decentralized	processing	steps,	with	a	decision	that	offers	transaction
finality	as	the	output.	This	governance	structure	is	based	on	incentive	economics
and	consensus.

Blockchain	began	with	largely	permissionless	networks	(for	example,	crypo-
asset-based	networks	such	as	bitcoin,	litecoin,	and	so	on)	that	relied	on
technology-based	systemic	governance	through	incentives	and	coordination.
This	kind	of	systemic	governance	poses	several	challenges	in	the	business	world
when	it	attempts	to	apply	the	tenets	of	blockchain.	The	enterprise	world	is	highly
regulated	and	therefore	relies	on	permissioned	blockchain	models	with	checks
and	balances;	this	can	become	rather	complicated	given	the	various	data
regulations,	fiduciary	responsibilities,	and	the	potential	conflicts	of	interest
among	competing	entities	that	are	transacting	together.	There	can't	necessarily	be
the	same	kinds	of	incentives	or	coordination,	due	to	confidentiality	and	privacy
concerns.

The	enterprise	focus	has	often	been	on	understanding	blockchain	technology	and
its	potential	impacts	on	business.	Governance	has	now	become	an	interesting

emerging	discipline	in	the	enterprise	blockchain	world—and	an	important	one.
As	you	can	see	from	the	discussion	of	blockchain	business	models,	there's	a
range	of	possible	governance	structures,	from	full	decentralization	and	quasi-
decentralization	to	fully	centralized	blockchain	networks.	The	governance
structure	actually	determines	many	other	aspects	of	the	blockchain	adoption,
from	design	to	operations	to	the	growth	model.	Business	models	and	governance
structures	are	close-knit	and	mutually	dependent;	both	direct	various	facets	of
how	a	blockchain	network	operates.

Governance	structure	and	landscape
The	kind	of	systemic	governance	that	relies	on	incentives	and	coordination
among	network	participants	is	inadequate	for	addressing	more	regulated
industries	and	their	use	cases.	So,	I'm	attempting	to	define	a	governance
structure	and	landscape	for	the	more	traditional	enterprise,	which	is	a	modular
approach	that	leverages	existing	best	practices.

This	model	aims	to	facilitate	progress	and	growth,	but	provide	the	necessary
separation	of	participants	in	a	network.	The	simplified	governance	structure	I'll
outline	is	built	upon	the	core	tenets	of	blockchain	as	well	as	principles	of
incentive,	penalties,	flexibility,	delegation,	and	coordination.	Keep	in	mind	that
the	goal	of	leveraging	blockchain	is	to	develop	networks	of	trust	while	enforcing
certain	rules	of	engagement.	Generally,	blockchain	projects	aim	to	motivate
upgrades	to	technology	and	security	and	to	penalize	non-compliance,	with	the
hope	of	ensuring	continued	participation	and	shared	business	benefits	for	the
network	powered	by	blockchain.	The	business	governance	model	I	again
describe	aids	not	only	fair	participation	in	such	networks	but	also	an	equitable
cost	structure.		This	section	provides	a	high	level	context.	We	have	discussed
additional	details	in	a	chapter	dedicated	to	Governance.

Information	technology	governance
The	discipline	of	IT	governance	focuses	on	IT	infrastructure,	performance,	cost
structure,	and	risk.	This	creates	some	challenges	in	a	decentralized	blockchain
network,	since	the	governance	framework	should	establish	accountability	to
encourage	desirable	behavior	and	optimal	functioning	of	the	network's	IT
infrastructure.	The	technical	design	and	infrastructure	choices	of	the	blockchain
network	ought	to	be	able	to	adapt	to	the	needs	of	its	participants.	Because
blockchain	networks	thrive	on	at	least	some	level	of	decentralization,	IT
governance	should	include	distributed	flexibility	and	distributed	control.

IT	governance	should	provide	at	least	the	following:

A	distributed	IT	management	structure
A	model	for	distributed	maintenance,	upgrades,	and	so	on
Utilization	of	industry	standards	—	COBIT,	ITIL,	ISO,	CMMI,	FAIR,	and
so	on
Resource	optimization—this	includes	technology	procurement,	supplier-
vendor	relations,	SLA	management,	skills,	and	talent	management

Technology	adoption	and	evaluation	to	keep	up	with	technology	evolution
A	network	deployment	strategy	to	encourage	and	enforce	regular	updates
and	upgrades
Network	support	services	—	IT	SLA	enforcement	and	membership	services
Risk	optimization	—	operational	support	services	(OSSs)	and	business
support	services	(BSSs),	IT	infrastructure	continuity	services/planning,
technology	alignment	to	legal	and	regulatory	requirements,	and	so	on

Blockchain	network	governance
Governance	can	involve	the	following:

Managing	participation	in	the	network
Forming	an	equitable	cost	structure	that's	distributed	fairly	based	on	the
activity	of	the	participants
Allowing	for	like-minded	participating	entities	to	engage	in	transactions
and	value	creation
Managing	rules	of	engagement	and	social	contracts	with	the	aim	of
promoting	fairness

Governance	of	the	blockchain	network's	governance	includes	the	following:

Onboarding	and	offboarding	members
Establishing	a	fair	cost	structure
Detailing	how	data	ownership	works
Regulatory	oversight	and	compliance	reporting
Managing	a	permissioning	structure	with	central	management	and	a	voting
process,	a	federated	structure,	and	a	delegated	structure
Managing	business	operations	and	SLAs
Network	support	services	(the	same	as	for	IT	governance)
Risk	optimization	(the	same	as	for	IT	governance)

Business	network	governance
Governing	blockchain	powered	business	networks	will	require	a	model	that	is,
again,	specific	to	the	use	case	and	industry,	factoring	in	the	evolution	and
particularities	of	that	industry.	This	governance	structure	will	be	multi-
organizational,	and	participating	organizations	need	to	have	a	wide
understanding	of	how	the	network	functions	through	their	collective
contributions	in	order	to	achieve	the	best	outcomes.	As	new	participants	are
added	or	removed,	and	the	blockchain	network	evolves,	its	dynamics	change,
too.

The	concept	of	co-creation	implies	bringing	parties	together	to	produce	a
mutually	advantageous	and	valuable	outcome.	One	example	could	be	uniting	a
company	with	a	group	of	customers	to	generate	new	ideas	and	hear	fresh
perspectives.

What	follows	is	a	non-exhaustive	list	of	what	business	network	governance
might	include:

Formulating	business	models,	rules	for	how	the	network	will	operate,	and
legal	charters
Service	management	that	is	common/shared	in	the	network,	such	as
knowing	your	customer	processes,	audits,	reporting,	and	so	on
Communication	related	to	the	network
Quality	assurance	and	performance	measurement
Monitoring	and	managing	network	security
Plans	for	product	and	business	network	evolution
Legal	and	regulatory	framework	enforcement
Strategies	for	ensuring	compliance	with	industry-specific	requirements
Establishing	stewards	of	the	technology	and	network

The	governance	structure	in	a	blockchain	network	can	be	an	interesting
challenge.	As	I've	shown,	there	remains	considerable	debate	about	full
decentralization,	quasi-decentralization,	and	full	centralization	of	blockchain
networks,	and	this	really	hinges	on	the	governance	structure.	By	this,	I	mean	that
the	governance	structure	of	a	blockchain	network	helps	decide	what	kind	of

interaction,	growth,	technology	choices,	and	operations	are	the	best	fit	for	that
network.	Blockchain,	as	I've	stated	before,	is	a	platform	that	enables	co-creation,
and	the	new	synergies	that	are	generated	from	it	will	require	some	management
through	SLAs	and	a	robust	governance	structure.	Governance	will	be	covered	in
detail	in	chapter	10,	Governance,	Necessary	Evil	of	Regulated	industries.	

Summary
All	of	this	helps	you	attract	new	participants	to	the	network,	as	well	as	sustain
the	confidence	of	founding	and	existing	participants,	all	while	maintaining
business	benefits	and	value.

The	business	models	and	governance	structures	depend	on	each	other	to	properly
govern	the	operation	of	blockchain	networks.	A	carefully	planned	governance
model	will	ensure	harmony	between	the	involved	entities,	who	may	function	as
competitors,	co-creators,	or	collaborators	at	different	times.

Setting	the	Stage	with	a	Business
Scenario
The	first	two	chapters	were	focused	on	setting	the	stage	and	defining	the
landscape	of	a	blockchain	project.	We	now	understand	how	the	technology
works	within	a	business	framework	and	how	the	various	Hyperledger	projects
aim	to	solve	the	problem	of	time	and	trust.

With	an	understanding	of	the	components	that	make	up	Hyperledger	Fabric,	we
will	now	delve	into	application	design	and	implementation	considerations.	The
next	few	chapters	will	take	you	through	the	steps	of	creating	your	very	own
smart	contract	and	then	integrating	it	to	an	application.

In	order	to	make	these	exercises	relevant,	we	will	leverage	a	business	use	case
with	its	roots	in	some	older	civilizations:	trading	and	letters	of	credit.

The	chapter's	objective	will	be	to	introduce	the	business	concept	of	letter	of
credit,	walk	you	through	the	sample	scenario	we	selected,	and	conclude	by
setting	up	our	development	environment.

In	this	chapter,	we	will:

Explore	letters	of	credit
Review	our	simplified	business	scenario
Set	up	our	development	environment

Trading	and	letter	of	credit
Step	back	in	history	to	a	time	when	merchants	traveled	across	continents	to	buy
cloth	in	one	country	to	sell	in	another	country.	As	a	Florentine	wool	merchant,
you	might	make	a	journey	to	Amsterdam	to	buy	fine	wool	in	that	newly	formed
city-state,	whose	port	collected	resources	from	the	whole	of	Northern	Europe
and	beyond.	You	could	then	transport	the	wool	to	Florence,	where	it	could	be
sold	to	tailors	making	fine	garments	for	their	wealthy	clients.	We're	talking	about
1300	AD—a	time	when	it	was	not	safe	to	carry	gold	or	other	precious	metals	as
a	form	of	currency	to	buy	and	sell	goods.	What	was	necessary	was	a	form	of
currency	that	worked	across	country	boundaries,	one	that	could	be	used	in
Amsterdam	and	Florence,	or	anywhere!

Marco	Polo	had	been	to	China	and	had	seen	how	commerce	was	conducted	in
that	thriving	economy.	At	the	heart	of	the	successful	Khan	empire	were
advanced	financial	techniques	that	we	would	recognize	today.	Fiat	currencies,
paper	money,	promissory	notes,	and	letters	of	credit	all	arrived	in	Europe	by	way
of	China.	Marco	Polo	brought	these	ideas	back	to	Europe—they	helped	form	and
grow	a	merchant	banking	industry	for	a	Europe	emerging	after	the	fall	of	the
Roman	Empire.

The	importance	of	trust	in	facilitating
trade
Our	Florentine	merchant	could	now	contact	his	banker	to	say	that	he	wanted	to
buy	wool	in	Amsterdam,	and	the	bank	would	in	return	give	him	a	letter	of	credit,
in	exchange	for	payment	on	account.	This	letter	could	have	various	stipulations,
such	as	the	maximum	amount	for	the	trade,	how	it	would	be	paid	(at	once	or	in
parts),	what	goods	it	could	be	used	for,	and	so	forth.	The	merchant	would	now
travel	to	Amsterdam,	and	after	selecting	wool	from	a	wool	merchant,	he	would
offer	the	letter	or	credit	as	payment.	The	Amsterdam	merchant	would	happily
exchange	the	wool	for	the	letter	because	Florentine	bankers	were	famed
throughout	Europe	as	being	trustworthy	when	it	came	to	money.	The	Amsterdam
merchant	could	bring	the	letter	of	credit	to	his	banker,	who	in	turn	would	credit
their	account.	Of	course,	the	Florentine	and	Amsterdam	bankers	charged	their
respective	clients—the	merchants—for	this	service!	It	was	good	for	everyone.	

Periodically,	Amsterdam	bankers	and	the	Florentine	bankers	would	meet	up	to
settle	their	accounts,	but	this	was	of	no	importance	to	the	wool	trader	and	wool
merchant.	Effectively,	what	was	happening	was	that	the	Florentine	and	Amstel
merchants	were	using	the	trust	between	their	respective	bankers	to	establish	a
trust	relationship	with	each	other—a	very	sophisticated	idea	when	you	think
about	it.	This	is	why	the	letter	of	credit	process	remains	a	fundamental	way	of
conducting	business	worldwide	to	this	day.

The	letter	of	credit	process	today
However,	over	time,	due	to	massive	globalization	of	trade	and	the	explosion	of
the	financial	industry,	the	number	of	financial	institutions	involved	in	the	letter
of	credit	process	has	exploded!	Nowadays,	there	could	be	over	20	intermediary
financial	institutions	involved	in	the	process.	This	requires	coordination	of	many
people	and	systems,	resulting	in	excessive	time,	cost,	and	risk	throughout	the
process	for	both	merchants	and	banks	alike.

The	promise	of	blockchain	is	to	provide	a	logically	singular	but	physically	distributed	system
that	provides	a	platform	for	a	low-friction	letter	of	credit	process.	The	characteristics	of	such
a	system	would	include	greater	transparency,	timeliness,	and	automation	(resulting	in	lower
cost),	and	new	features	such	as	incremental	payment.

Business	scenario	and	use	case
International	trade	includes	the	kinds	of	situations	that	illustrate	the
inefficiencies	and	distrust	in	real-world	processes	that	blockchains	were
designed	to	mitigate.	So,	we	have	selected	an	element	of	an	import-export
scenario	with	simplified	versions	of	transactions	carried	out	in	the	real	world	as
our	canonical	use	case	for	practical	exercises	in	the	next	few	chapters.

Overview
The	scenario	we	will	describe	involves	a	simple	transaction:	the	sale	of	goods
from	one	party	to	another.	This	transaction	is	complicated	by	the	fact	that	the
buyer	and	the	seller	live	in	different	countries,	so	there	is	no	common	trusted
intermediary	to	ensure	that	the	exporter	gets	the	money	he	was	promised	and	the
importer	gets	the	goods.	Such	trade	arrangements	in	today's	world	rely	on:

Intermediaries	that	facilitate	payments	and	physical	transfer	of	goods
Processes	that	have	evolved	over	time	to	enable	exporters	and	importers	to
hedge	their	bets	and	reduce	the	risks	involved

Real-world	processes
The	intermediaries	that	facilitate	payment	are	the	respective	banks	of	the
exporter	and	the	importer.	In	this	case,	the	trade	arrangement	is	fulfilled	by	the
trusted	relationships	between	a	bank	and	its	client,	and	between	the	two	banks.
Such	banks	typically	have	international	connections	and	reputations	to	maintain.
Therefore,	a	commitment	(or	promise)	by	the	importer's	bank	to	make	a	payment
to	the	exporter's	bank	is	sufficient	to	trigger	the	process.	The	goods	are
dispatched	by	the	exporter	through	a	reputed	international	carrier	after	obtaining
regulatory	clearances	from	the	exporting	country's	government.

Proof	of	delivery	to	the	carrier	is	sufficient	to	clear	payment	from	the	importer's
bank	to	the	exporter's	bank,	and	such	clearance	is	not	contingent	on	the	goods
reaching	their	intended	destination	(it	is	assumed	that	the	goods	are	insured
against	loss	or	damage	in	transit.)	The	promise	made	by	the	importer's	bank	to
pay	the	exporter's	bank	specifies	a	list	of	documents	that	are	required	as	proof	of
dispatch,	and	the	precise	method	of	payment	to	be	made	immediately	or	over	a
period.	Various	regulatory	requirements	must	be	fulfilled	by	the	exporter	before
getting	documentary	clearances	that	allow	them	to	hand	off	the	goods	to	the
carrier.

Simplified	and	modified	processes
Our	use	case	will	follow	a	simplified	version	of	the	preceding	process,	with
certain	variations	to	demonstrate	the	value	of	blockchain	in	facilitating	this	trade.
A	payment	promise	is	made	by	the	importer's	bank	to	the	exporter's	bank	in	two
installments.	The	exporter	obtains	a	clearance	certificate	from	the	regulatory
authority,	hands	off	the	goods	to	the	carrier,	and	then	obtains	a	receipt.	The
production	of	the	receipt	triggers	the	first	payment	installment	from	the
importer's	bank	to	the	exporter's	bank.	When	the	shipment	has	reached	the
destination	port,	the	second	and	final	payment	installments	are	made,	and	the
process	concludes.

Terms	used	in	trade	finance	and
logistics
The	following	terms	are	used	to	refer	to	certain	instruments	and	artifacts	that	are
in	play	in	our	trade	scenario.	The	application	we	will	build	in	this	chapter	uses
very	simplified	forms	of	these	instruments:

Letter	of	credit:	As	we	have	seen	at	the	beginning	of	the	chapter,	this
refers	to	a	bank's	promise	to	pay	an	exporter	upon	presentation	of
documentary	proof	of	goods	having	been	shipped.	Called	L/C	for	short,	this
document	is	issued	by	the	importer's	bank	at	the	request	of	its	client:	the
importer.	The	L/C	states	the	list	of	documents	that	constitute	proof	of
shipment,	the	amount	to	be	paid,	and	the	beneficiary	(the	exporter	in	our
case)	of	that	amount.	A	sample	L/C	is	illustrated	in	the	following
screenshot:

We	will	introduce	small	variations	in	our	use	case	to	make	this
instrument	comprehensible	to	the	reader.	Firstly,	the	L/C	will	be	issued	to

the	exporter's	bank	rather	than	directly	to	the	exporter.	Secondly,	the	L/C
states	that	payment	will	be	made	in	two	identical	installments,	the	first
upon	production	of	two	documents	and	the	second	upon	the	goods
reaching	the	destination.

Export	license:	This	refers	to	the	approval	given	by	the	regulatory
authority	in	the	exporter's	country	for	the	shipment	of	the	specified	goods.
In	this	book,	we	will	refer	to	it	as	E/L	for	short.	A	sample	E/L	is	illustrated
in	the	following	screenshot:

Bill	of	lading:	This	is	a	document	issued	by	the	carrier	to	the	exporter	once
it	takes	possession	of	the	shipment.	Called	B/L	for	short,	it	simultaneously
serves	as	a	receipt,	a	contract	obliging	the	carrier	to	transport	the	goods	to	a
specified	destination	in	return	for	a	fee,	and	a	title	of	ownership	of	the
goods.	This	document	is	also	listed	in	the	L/C	and	serves	as	proof	of
shipment	that	will	automatically	trigger	a	payment	clearance.	A	sample	B/L
is	illustrated	in	the	following	screenshot:

Shared	process	workflow
Every	instance	of	a	test	case	scenario	presented	in	this	chapter	takes	a	long
period	of	time	to	complete,	involves	interactions	among	different	sets	of	entities
at	different	times,	and	has	many	different	moving	parts	that	are	difficult	to	keep
track	of.	We	hope	to	simplify	this	process	using	our	workflow.	Implemented	on	a
blockchain,	the	sequences	of	transactions	described	in	the	following	steps	(and
illustrated	in	the	following	diagram)	can	be	carried	out	in	an	irrevocable	and
non-repudiable	manner.	In	this	sequence	of	events,	we	assume	a	straight,	linear
narrative	where	parties	are	in	agreement	with	each	other	and	nothing	untoward
happens;	guards	are	built	in	the	process	only	to	catch	errors.

The	transactions	in	our	workflow	are	as	follows:

1.	 Importer	requests	goods	from	the	exporter	in	exchange	of	money
2.	 Exporter	accepts	the	trade	deal
3.	 Importer	asks	its	bank	for	an	L/C	in	favor	of	the	exporter
4.	 The	importer's	bank	supplies	an	L/C	in	favor	of	the	exporter,	and	payable	to

the	latter's	bank
5.	 The	exporter's	bank	accepts	the	L/C	on	behalf	of	the	exporter
6.	 Exporter	applies	for	an	E/L	from	the	regulatory	authority
7.	 Regulatory	authority	supplies	an	E/L	to	the	exporter
8.	 Exporter	prepares	a	shipment	and	hands	it	off	to	the	carrier
9.	 The	carrier	accepts	the	goods	after	validating	the	E/L,	and	then	supplies	a

B/L	to	the	exporter
10.	 The	exporter's	bank	claims	half	the	payment	from	the	importer's	bank
11.	 The	importer's	bank	transfers	half	the	amount	to	the	exporter's	bank
12.	 The	carrier	ships	the	goods	to	the	destination
13.	 The	importer's	bank	pays	the	remaining	amount	to	the	exporter's	bank

Here	is	a	diagram	to	explain	the	transaction	workflow:

Shared	assets	and	data
The	participants	in	the	previous	workflow	must	have	some	information	in
common	that	gives	them	a	view	into	the	trade	arrangement	and	its	progress	at
any	given	moment.

The	following	is	a	table	of	the	assets	owned	by	the	participants,	which	are	shared
with	each	other	to	drive	the	process	from	one	stage	to	the	next.	This	includes
documentary	and	monetary	assets:

Asset
type Asset	attributes

Letter	of
credit

ID,	issue	date,	expiration	date,	issuer,	beneficiary,	amount,	and	a
list	of	documents

Bill	of
lading

ID,	shipper	(exporter),	consignee	(importer),	party	to	notify
(importer's	bank),	places	of	receipt	and	delivery,	description	of
goods,	and	freight	amount

Export
license

ID,	issue	date,	expiration	date,	beneficiary,	license	holder,	and
description	of	goods

Payment Amount	in	standard	currency	units

	

The	following	are	the	data	elements	that	circumscribe	the	options	available	to

participants	in	each	stage:

Data	type Data	attributes

Trade
agreement Requested	by	importer	and	accepted	by	exporter

Letter	of
credit

Requested	by	importer,	issued	by	importer's	bank,	and
accepted	by	exporter's	bank

Export
license Requested	by	exporter	and	issued	by	regulatory	authority

Shipment Prepared	by	exporter,	accepted	by	carrier,	and	current	position
or	location

Participants'	roles	and	capabilities
There	are	six	categories	of	participants	in	our	scenario:which	are	exporter,
importer,	exporter's	bank,	importer's	bank,	carrier,	and	regulatory	authority.	The
terms	in	this	set	refer	to	the	roles	an	entity	can	assume	in	a	trade	deal;	for
example,	a	company	exporting	goods	in	one	instance	may	be	an	importer	in
another.	The	capabilities	and	restrictions	of	each	role	are	also	detailed	in	the
following	list:

Only	an	importer	may	apply	for	an	L/C
Only	an	importer's	bank	may	supply	an	L/C
Only	an	exporter's	bank	may	accept	an	L/C
Only	an	exporter	may	request	an	E/L
Only	a	regulatory	authority	may	supply	an	E/L
Only	an	exporter	may	prepare	a	shipment
Only	a	carrier	may	supply	a	B/L
Only	a	carrier	may	update	a	shipment	location
Only	an	importer's	bank	may	send	money,	and	only	an	exporter's	bank	may
receive	money

Benefits	of	blockchain	applications
over	current	real-world	processes
The	risks	inherent	in	transferring	goods	or	making	payments	in	the	absence	of
safeguards	(such	as	a	trusted	mediator)	inspired	the	involvement	of	banks	and
led	to	the	creation	of	the	letter	of	credit	and	bill	of	lading.	A	consequence	of
these	processes	was	not	just	additional	cost	(banks	charge	commission	to	issue
letters	of	credit)	or	additional	overhead.	Applying	and	waiting	for	export	licenses
to	be	awarded	also	increases	the	turnaround	time.	In	an	ideal	trade	scenario,	only
the	process	of	preparing	and	shipping	the	goods	would	take	time.	Recently,	the
adoption	of	SWIFT	messaging	over	manual	communication	has	made	the
document	application	and	collection	processes	more	efficient,	but	it	has	not
fundamentally	changed	the	game.	A	blockchain,	on	the	other	hand,	with	its
(almost)	instantaneous	transaction	commitments	and	assurance	guarantees,
opens	possibilities	that	did	not	previously	exist.

As	an	example,	the	one	variation	we	introduced	in	our	use	case	was	payment	by
installments,	which	cannot	be	implemented	in	the	legacy	framework	because
there	is	no	guaranteed	way	of	knowing	and	sharing	information	about	a
shipment's	progress.	Such	a	variation	would	be	deemed	too	risky	in	this	case,
which	is	why	payments	are	linked	purely	to	documentary	evidence.	By	getting
all	participants	in	a	trade	agreement	on	a	single	blockchain	implementing	a
common	smart	contract,	we	can	provide	a	single	shared	source	of	truth	that	will
minimize	risk	and	simultaneously	increase	accountability.

In	subsequent	chapters,	we	will	demonstrate	in	detail	how	our	use	case	is
implemented	on	the	Hyperledger	Fabric	and	Composer	platforms.	The	reader
will	be	able	to	appreciate	both	the	simplicity	and	elegance	of	the
implementation,	which	can	then	be	used	as	a	guide	for	other	applications	to
revamp	their	archaic	processes	using	this	exciting	new	technology.	However,
before	jumping	into	the	code,	we	will	look	at	the	design	of	a	Hyperledger
network	and	we	will	set	up	our	development	environment.

Setting	up	the	development
environment
As	you	already	know	by	now,	an	instance	of	a	Hyperledger	Fabric	blockchain	is
referred	to	as	a	channel,	which	is	a	log	of	transactions	linked	to	each	other	in	a
cryptographically	secure	manner.	To	design	and	run	a	blockchain	application,	the
first	step	is	to	determine	how	many	channels	are	required.	For	our	trade
application,	we	will	use	one	channel,	which	will	maintain	the	history	of	trades
carried	out	among	the	different	participants.

A	Fabric	peer	may	belong	to	multiple	channels,	which	from	the	application's	perspective	will
be	oblivious	to	each	other,	but	which	help	a	single	peer	run	transactions	in	different
applications	on	behalf	of	its	owners	(or	clients).	A	channel	may	run	multiple	smart	contracts,
each	of	which	may	be	an	independent	application	or	linked	together	in	a	multi-contract
application.	In	this	chapter,	and	in	this	book,	we	will	walk	the	reader	through	the	design	of	a
single-channel,	single-contract	application	for	simplicity's	sake.	It	is	up	to	the	reader	to
design	more	complex	applications,	relying	on	the	information	provided	in	this	book	as	well	as
in	the	Fabric	documentation.

Before	we	delve	into	the	mechanics	of	setting	up	our	system	to	install	an
application	and	run	transactions	on	our	smart	contract,	we	will	describe	how	to
create	and	launch	a	network	on	which	the	application	will	be	installed.	A	sample
network	structure	will	be	used	to	illustrate		trade	operations	throughout	this
chapter	(in	Chapter	9,	Life	in	a	Blockchain	Network,	you	will	see	how	this	sample
network	can	be	modified	as	the	requirements	change	and	evolve).

Designing	a	network
The	first	step	in	determining	a	Hyperledger	Fabric	network	structure	for	one's
application	is	listing	the	participating	organizations.	Logically,	an	organization	is
a	security	domain	and	a	unit	of	identity	and	credentials.	It	governs	one	or	more
network	peers,	and	depends	on	a	membership	service	provider	(MSP)	to	issue
identities	and	certificates	for	the	peers	as	well	as	clients	for	smart	contract	access
privileges.	The	ordering	service,	which	is	the	cornerstone	of	a	Fabric	network,	is
typically	assigned	its	own	organization.	The	following	diagram	illustrates	a
typical	peer	network	structure	with	clients,	MSPs,	and	logical	organization
groupings.

The	criterion	for	the	approval	of	a	transaction	(or	invocation)	is	an	endorsement
policy	(which	we	will	revisit	later	in	this	chapter).	It	is	framed	in	terms	of	the
organizations	that	are	participating	in	the	application	network,	and	not	the	peers
themselves:

Figure	?	Blockchain	network	with	peers	distributed	among	organizations,	and	clients	obtaining	credentials	from	organizations	to
submit	queries	and	invocations	to	the	chaincode

The	set	of	peers,	the	organizations	they	belong	to,	and	the	membership	service
providers	serving	each	organization	must	be	decided	beforehand	so	that	the
appropriate	services	can	be	installed	and	run	on	those	machines.

Our	sample	trade	network	will	consist	of	four	organizations,	representing	the
exporter,	importer,	carrier,	and	regulator,	respectively.	The	latter	two	represent
the	carrier	and	regulator	entities,	respectively.	The	exporter	organization,
however,	represents	both	the	exporting	entity	and	its	bank.	Similarly,	the
importer	organization	represents	the	importing	entity	and	its	bank.	Grouping
entities	with	parties	they	trust	into	a	single	organization	makes	sense	from	both
the	perspective	of	security	and	cost.	Running	a	Fabric	peer	is	a	heavy	and	costly
business,	so	it	is	sufficient	for	a	bank,	which	likely	has	more	resources	and	a
large	clientele,	to	run	such	a	peer	on	behalf	of	itself	and	its	clients.	A	trading
entity	obtains	the	right	to	submit	transactions	or	read	the	ledger	state	from	its
organizations	in	the	role	of	a	client.	Our	blockchain	network	therefore	needs	four
peers,	each	belonging	to	a	different	organization.	Apart	from	the	peers,	our
network	consists	of	one	MSP	for	each	of	the	four	organizations,	and	an	ordering
service	running	in	solo	mode.

In	a	production	application,	the	ordering	service	should	be	set	up	as	a	Kafka	cluster	on
Zookeeper,	but	for	the	purpose	of	demonstrating	how	to	build	a	blockchain	application,	the
ordering	service	can	be	treated	as	a	black	box.

The	ordering	service	belongs	to	its	own	separate	organization	with	an	MSP.	The
Organizations	with	their	MSPs,	peers,	and	clients	of	our	trading	network	are
illustrated	in	the	following	diagram:

Figure	3.2:	A	trade	network	with	peers,	an	orderer,	and	clients	in	their	respective	organizations

The	reader	may	wonder	how,	if	a	trading	party	and	its	banker	belong	to	the	same
organization,	the	application	can	distinguish	the	two	(the	exporter	from	the	exporter’s	bank,
and	the	importer	from	importer’s	bank)	for	the	purpose	of	controlling	access	to	the	smart
contract	and	ledger.	Two	ways	of	doing	this	are	as	follows:

Embedding	access	control	logic	in	the	middleware	and	application	layers	(which	we
will	describe	later	in	this	chapter),	whereby	users	can	be	distinguished	by	their	IDs	(or
login	names)	and	an	access	control	list	mapping	IDs	to	permitted	chaincode	functions
is	maintained.
Having	an	organization’s	MSP,	acting	as	a	CA	server,	embed	distinguishing	attributes
within	the	certificates	it	issues	to	members	of	an	organization.	The	access	control	logic
can	be	implemented	in	the	middleware	or	even	in	the	chaincode	to	parse	the	attributes
and	permit	or	disallow	an	operation	as	per	application	policy.

These	mechanisms	are	not	implemented	in	our	application,	in	which	bankers	and	clients	are
indistinguishable	to	the	smart	contract	and	the	middleware	layers.	But	the	reader	may	treat
this	as	an	exercise,	which	should	be	straightforward	for	someone	skilled	at	developing	secure
client-server	applications.

Installing	prerequisites
With	the	design	of	the	network	in	hand,	lets	install	the	pre-requisite	tools:

1.	 Ensure	that	you	have	the	latest	version	of:
Docker	using	https://docs.docker.com/install/
Docker-Compose	using:	https://docs.docker.com/compose/install/	

2.	 We	will	be	using	GitHub	to	share	the	source	code	of	our	tutorial.	To	access
GitHub,	the	Git	client	needs	to	be	installed	and	configured	with
authentication	to	GitHub.	For	more	information,	visit	GitHub's	official
website	at	https://help.github.com/articles/set-up-git/.

	

3.	 Install	the	software	required	for	the	business	network	example:	https://hyperl
edger.github.io/composer/latest/installing/installing-prereqs.
The	instructions	above	are	for	the	Mac	and	Linux.	Note	that	when	using
Windows,	we	recommend	the	use	of	a	solution	like	Vagrant	to	run	the
development	environment	in	a	virtual	machine.

4.	 Fabric	is	implemented	in	the	Go	language.	Note	that:
Go	is	syntactically	similar	to	C++
We	will	also	use	Go	to	write	chaincodes
Go	can	be	installed	from	https://golang.org/

5.	 Next,	we	need	to	set	up	our	environmental	variables.

GOPATH	points	to	a	workspace	for	the	go	source	code,	for	example:

									$	export	GOPATH=$HOME/go	

PATH	needs	to	include	the	Go	bin	directory	used	to	store	libraries	and
executables,	as	we	can	see	in	the	following	snippet:

									$	export	PATH=$PATH:$GOPATH/bin	

https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://help.github.com/articles/set-up-git/
https://hyperledger.github.io/composer/latest/installing/installing-prereqs
https://golang.org/

Forking	and	cloning	the	trade-
finance-logistics	repository
Now	we	need	to	get	our	own	copy	of	the	original	source	code	by	forking	the
repository	on	GitHub.	Then,	we	can	clone	the	source	code	into	a	local	machine
directory	with	the	following	steps:

1.	 In	GitHub,	navigate	to	the	following	repository:	https://github.com/Hyperled
gerHandsOn/trade-finance-logistics

2.	 Fork	the	repository:	Use	the	Fork	button	at	the	top-right	corner	of	the	page
to	create	a	copy	of	the	source	code	to	your	account

3.	 Get	the	clone	URL:	Navigate	to	your	fork	of	the	trade-finance-logistics
repository.	Click	on	the	Clone	or	download	button,	and	copy	the	URL

4.	 Clone	the	repository:	In	the	Go	workspace,	clone	the	repository	as
follows:

$	cd	$GOPATH/src	

$	git	clone	https://github.com/YOUR-USERNAME/trade-finance-logistics

We	now	have	a	local	copy	of	all	the	trade-finance-logistics	tutorial	materials.

https://github.com/HyperledgerHandsOn/trade-finance-logistics

Creating	and	running	a	network
configuration	
The	code	to	configure	and	launch	our	network	can	be	found	in	the	network
folder	in	our	repository	(this	is	an	adaptation	of	fabric-samples/first-network).	For
this	exercise,	we	will	run	the	entire	network	on	a	single	physical	or	virtual
machine,	with	the	various	network	elements	running	in	suitably	configured
Docker	containers.	It	is	assumed	that	the	reader	has	a	basic	familiarity	with
containerization	using	Docker	and	configurations	using	Docker-compose.	Once
the	prerequisites	listed	in	the	previous	section	are	met,	it	is	sufficient	to	run	the
commands	in	that	section	without	any	extra	knowledge	or	configuration	required
of	the	reader.

https://github.com/hyperledger/fabric-samples/tree/master/first-network

Preparing	the	network
We	need	to	perform	the	following	steps	before	generating	network	cryptographic
material:

1.	 Clone	the	Fabric	(https://github.com/hyperledger/fabric/)	source	code
repository

2.	 Run	make	docker	to	build	Docker	images	for	the	peers	and	orderers
3.	 Run	make	configtxgen	cryptogen	to	generate	the	necessary	tools	to	run	the

network	creation	commands	described	in	this	section
4.	 Clone	the	Fabric-CA	(https://github.com/hyperledger/fabric-ca)	source	code

repository
5.	 Run	make	docker	to	build	the	Docker	images	for	the	MSPs

https://github.com/hyperledger/fabric/
https://github.com/hyperledger/fabric-ca

Generating	network	cryptographic
material
The	first	step	in	the	configuration	of	a	network	involves	the	creation	of
certificates	and	signing	keys	for	the	MSP	of	each	peer	and	orderer	organization,
and	for	TLS-based	communication.	We	also	need	to	create	certificates	and	keys
for	each	peer	and	orderer	node	to	be	able	to	communicate	with	each	other	and
with	their	respective	MSPs.	The	configuration	for	this	must	be	specified	in	a
crypto-config.yaml	file	in	the	network	folder	in	our	code	repository.	This	file	contains
the	organization	structure	(see	more	details	in	the	channel	artifacts	configuration
section	later),	the	number	of	peers	in	each	organization,	and	the	default	number
of	users	in	an	organization	for	whom	certificates	and	keys	must	be	created
(note	that	an	admin	user	is	created	by	default).	As	an	example,	see	the	definition
of	the	Importer’s	organization	in	the	file	as	follows:

PeerOrgs:

-	Name:	ImporterOrg

		Domain:	importerorg.trade.com

		EnableNodeOUs:	true

		Template:

				Count:	1

		Users:

				Count:	2

This	configuration	indicates	that	the	organization	labeled	ImporterOrg	will	contain
one	peer.	Two	non-admin	users	will	also	be	created.	The	organization	domain
name	to	be	used	by	the	peer	is	also	defined.

To	generate	cryptographic	material	for	all	the	organizations,	run	the	cryptogen
command	as	follows:

cryptogen	generate	--config=./crypto-config.yaml

The	output	is	saved	to	the	crypto-config	folder.

Generating	channel	artifacts
To	create	a	network	according	to	an	organization's	structure,	and	to	bootstrap	a
channel,	we	will	need	to	generate	the	following	artifacts:

A	genesis	block,	containing	organization-specific	certificates	that	serve	to
initialize	the	Fabric	blockchain.
Channel	configuration	information.
Anchor	peer	configurations	for	each	organization.	An	anchor	peer	serves	as
a	fulcrum	within	an	organization,	for	cross-organization	ledger	syncing
using	the	Fabric	gossip	protocol.

Like	the	crypto-config.yaml	file,	channel	properties	are	specified	in	a	file
labeled	configtx.yaml,	which	in	our	source	code	can	be	found	in	the	network	folder.
The	high-level	organization	of	our	trade	network	can	be	found	in	the	Profiles
section	as	follows:

Profiles:

		FourOrgsTradeOrdererGenesis:

				Capabilities:

						<<:	*ChannelCapabilities

				Orderer:

						<<:	*OrdererDefaults

						Organizations:

								-	*TradeOrdererOrg

						Capabilities:

								<<:	*OrdererCapabilities

				Consortiums:

						TradeConsortium:

								Organizations:

										-	*ExporterOrg

										-	*ImporterOrg

										-	*CarrierOrg

										-	*RegulatorOrg

		FourOrgsTradeChannel:

				Consortium:	TradeConsortium

				Application:

						<<:	*ApplicationDefaults

						Organizations:

								-	*ExporterOrg

								-	*ImporterOrg

								-	*CarrierOrg

								-	*RegulatorOrg

						Capabilities:

								<<:	*ApplicationCapabilities

As	we	can	see,	the	channel	we	are	going	to	create	is	named	FourOrgsTradeChannel,

which	is	defined	in	the	profile.	The	four	organizations	participating	in	this
channel	are	labeled	ExporterOrg,	ImporterOrg,	CarrierOrg,	and	RegulatorOrg,	each	of
which	refers	to	a	subsection	defined	in	the	Organizations	section.	The	orderer
belongs	to	its	own	organization	called	TradeOrdererOrg.	Each	organization	section
contains	information	about	its	MSP	(ID	as	well	as	the	location	of	the
cryptographic	material,	such	as	keys	and	certificates),	and	the	hostname	and	port
information	for	its	anchor	peers.	As	an	example,	the	ExporterOrg	section	contains
the	following:

-	&ExporterOrg

		Name:	ExporterOrgMSP

		ID:	ExporterOrgMSP

		MSPDir:	crypto-config/peerOrganizations/exporterorg.trade.com/msp

		AnchorPeers:

				-	Host:	peer0.exporterorg.trade.com

				Port:	7051

As	you	can	see,	the	MSPDir	variable	(representing	a	folder)	in	this	specification
references	the	cryptographic	material	we	generated	earlier	using	the	cryptogen
tool.

To	generate	the	channel	artifacts,	we	use	the	configtxgen	tool.	To	generate	the
genesis	block	(which	will	be	sent	to	the	orderer	during	network	bootstrap),	run
the	following	command	from	the	network	folder:

configtxgen	-profile	FourOrgsTradeOrdererGenesis	-outputBlock	./channel-

artifacts/genesis.block

The	FourOrgsTradeOrdererGenesis	keyword	corresponds	to	the	profile	name	in	the
Profiles	section.	The	genesis	block	will	be	saved	in	the	genesis.block	file	in	the
channel-artifacts	folder.	To	generate	the	channel	configuration,	run	the	following
code:

configtxgen	-profile	FourOrgsTradeChannel	-outputCreateChannelTx	./channel-

artifacts/channel.tx	-channelID	tradechannel

The	channel	we	will	create	is	named	tradechannel,	and	its	configuration	is	stored
in	channel-artifacts/channel.tx.	To	generate	the	anchor	peer	configuration	for	the
exporter	organization,	run:

configtxgen	-profile	FourOrgsTradeChannel	-outputAnchorPeersUpdate	./channel-

artifacts/ExporterOrgMSPanchors.tx	-channelID	tradechannel	-asOrg	ExporterOrgMSP

The	same	process	should	be	repeated	for	the	other	three	organizations,	while

changing	the	organization	names	in	the	preceding	command.

The	environment	variable	FABRIC_CFG_PATH	must	be	set	to	point	to	the	folder	that	contains	the
configtx.yaml	file	in	order	for	the	configtxgen	tool	to	work.	The	script	file	trade.sh	(which	we	will
use	later)	contains	the	following	line	to	ensure	that	the	YAML	file	is	loaded	from	the	folder	in
which	the	command	is	run:

export	FABRIC_CFG_PATH=${PWD}

Generating	the	configuration	in	one
operation
For	convenience,	the	trade.sh	script	is	configured	to	generate	the	channel	artifacts
as	well	as	the	cryptographic	material	using	the	commands	and	configuration	files
described	previously.	Just	run	the	following	command	from	within	the	network
folder:

./trade.sh	generate	-c	tradechannel

Although	you	can	specify	any	channel	name	here,	note	that	the	configurations
used	to	develop	the	middleware	later	in	this	chapter	will	depend	on	that	name.

Composing	a	sample	trade	network
The	last	command	also	has	the	effect	of	generating	a	network	configuration
file,	docker-compose-e2e.yaml,	which	is	used	to	start	the	network	as	a	set	of	Docker
containers	using	the	docker-compose	tool.	The	file	itself	depends	on	the
statically	configured	files	base/peer-base.yaml	and	base/docker-compose-base.yaml.	These
files	collectively	specify	services	and	their	attributes,	and	enable	us	to	run	them
all	in	one	go	within	Docker	containers,	rather	than	having	to	manually	run
instances	of	these	services	on	one	or	more	machines.	The	services	we	need	to
run	are	as	follows:

Four	instances	of	a	Fabric	peer,	one	in	each	organization
One	instance	of	a	Fabric	orderer
Five	instances	of	a	Fabric	CA,	corresponding	to	the	MSPs	of	each
organization

Docker	images	for	each	can	be	obtained	from	the	Hyperledger	project	on	Docker
Hub	(https://hub.docker.com/u/hyperledger/),	with	the	images	being	hyperledger/fabric-
peer,	hyperledger/fabric-orderer,	hyperledger/fabric-ca	for	peers,	orderers,	and	MSPs,
respectively.

The	base	configuration	of	a	peer	can	be	as	follows	(see	base/peer-base.yaml):

peer-base:

image:	hyperledger/fabric-peer:$IMAGE_TAG

environment:

		-	CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

		-	CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=${COMPOSE_PROJECT_NAME}_trade

		-	CORE_LOGGING_LEVEL=INFO

		-	CORE_PEER_TLS_ENABLED=true

		-	CORE_PEER_GOSSIP_USELEADERELECTION=true

		-	CORE_PEER_GOSSIP_ORGLEADER=false

		-	CORE_PEER_PROFILE_ENABLED=true

		-	CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/fabric/tls/server.crt

		-	CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/fabric/tls/server.key

		-	CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/tls/ca.crt

working_dir:	/opt/gopath/src/github.com/hyperledger/fabric/peer

command:	peer	node	start

Fabric	configuration	parameters	can	be	set	here,	but	if	you	use	the	pre-built
Docker	image	for	fabric-peer,	the	defaults	are	sufficient	to	get	a	peer	service	up
and	running.	The	command	to	run	the	peer	service	is	specified	in	the	last	line	of

https://hub.docker.com/u/hyperledger/

the	configuration	as	peer	node	start;	if	you	wish	to	run	a	peer	by	downloading	the
Fabric	source	and	building	it	on	your	local	machine,	this	is	the	command	you
will	have	to	run	(see	Chapter	4,	Designing	a	Data	and	Transaction	Model	with
Golang,	for	examples).	Also	make	sure	you	configure	the	logging	level
appropriately	using	the	CORE_LOGGING_LEVEL	variable.	In	our	configuration,	the
variable	is	set	to	INFO,	which	means	that	only	informational,	warning,	and	error
messages	will	be	logged.	If	you	wish	to	debug	a	peer	and	need	more	extensive
logging,	you	can	set	this	variable	to	DEBUG.

The	IMAGE_TAG	variable	is	set	to	latest	in	the	.env	file	in	the	network	folder,	though	you	can	set	a
specific	tag	if	you	wish	to	pull	older	images.

Furthermore,	we	need	to	configure	the	hostnames	and	ports	for	each	peer,	and
sync	the	cryptographic	material	generated	(using	cryptogen)	to	the	container
filesystem.	The	peer	in	the	exporter	organization	is	configured	in	base/docker-
compose-base.yaml	as	follows:

peer0.exporterorg.trade.com:

		container_name:	peer0.exporterorg.trade.com

		extends:

				file:	peer-base.yaml

				service:	peer-base

		environment:

				-	CORE_PEER_ID=peer0.exporterorg.trade.com

				-	CORE_PEER_ADDRESS=peer0.exporterorg.trade.com:7051

				-	CORE_PEER_GOSSIP_BOOTSTRAP=peer0.exporterorg.trade.com:7051

				-	CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.exporterorg.trade.com:7051

				-	CORE_PEER_LOCALMSPID=ExporterOrgMSP

		volumes:

				-	/var/run/:/host/var/run/

				-	../crypto-

config/peerOrganizations/exporterorg.trade.com/peers/peer0.exporterorg.trade.com/msp:/etc/hyperledger/fabric/msp

				-	../crypto-

config/peerOrganizations/exporterorg.trade.com/peers/peer0.exporterorg.trade.com/tls:/etc/hyperledger/fabric/tls

				-	peer0.exporterorg.trade.com:/var/hyperledger/production

		ports:

				-	7051:7051

				-	7053:7053

As	indicated	by	the	extends	parameter,	this	extends	the	base	configuration.	Note
that	the	ID	(CORE_PEER_ID)	matches	that	which	is	specified	for	this	peer
in	configtx.yaml.	This	identity	is	the	hostname	for	the	peer	running	in	the	exporter
organization,	and	will	be	used	in	the	middleware	code	later	in	this	chapter.	The
volumes	section	indicates	the	rules	for	copying	the	cryptographic	material
generated	in	the	crypto-config	folder	to	the	container.	The	peer	service	itself
listens	on	port	7051,	and	the	port	that	clients	can	use	to	subscribe	to	events	is	set
to	7053.

In	the	file,	you	will	see	that	the	in-container	ports	are	identical	across	peers,	but	are	mapped
to	distinct	ports	on	the	host	machine.	Lastly,	note	that	the	MSP	ID	specified	here	also	matches
that	specified	in	configtx.yaml.

The	configuration	of	the	orderer	service	is	similar,	as	the	following	snippet	from
base/docker-compose-base.yaml	indicates:

orderer.trade.com:

		container_name:	orderer.trade.com

		image:	hyperledger/fabric-orderer:$IMAGE_TAG

		environment:

				-	ORDERER_GENERAL_LOGLEVEL=INFO

		……

		command:	orderer

		……

The	command	to	start	the	orderer	is	simply	orderer,	as	the	code	indicates.	The
logging	level	can	be	configured	using	the	ORDERER_GENERAL_LOGLEVEL	variable,	and	is
set	to	INFO	in	our	configuration.

The	actual	network	configuration	that	we	will	run	is	based	on	a	file	named
docker-compose-e2e.yaml.	This	file	does	not	exist	in	the	repository	but	is	rather
created	by	the	command	./trade.sh	generate	-c	tradechannel,	which	we	ran	earlier	to
generate	channel	and	cryptographic	material.	This	file	depends	on	base/docker-
compose-base.yaml	(and	indirectly	base/peer-base.yaml)	as	you	can	see	by	examining
the	file	contents.	It	is	actually	created	from	a	template	YAML	file	named	docker-
compose-e2e-template.yaml,	which	you	can	find	in	the	network	folder.	The	template	file
contains	variables	as	stand-ins	for	key	filenames	that	are	generated	using
cryptogen.	When	docker-compose-e2e.yaml	is	generated,	those	variable	names	are
replaced	with	actual	filenames	within	the	crypto-config	folder.

For	example,	consider	the	exporter-ca	section	in	docker-compose-e2e-template.yaml:

exporter-ca:

		image:	hyperledger/fabric-ca:$IMAGE_TAG

		environment:

				……

				-	FABRIC_CA_SERVER_TLS_KEYFILE=/etc/hyperledger/fabric-ca-server-

config/EXPORTER_CA_PRIVATE_KEY

		……

		command:	sh	-c	'fabric-ca-server	start	--ca.certfile	/etc/hyperledger/fabric-ca-

server-config/ca.exporterorg.trade.com-cert.pem	--ca.keyfile	/etc/hyperledger/fabric-

ca-server-config/EXPORTER_CA_PRIVATE_KEY	-b	admin:adminpw	-d'

Now,	look	at	the	same	section	in	the	generated	file	docker-compose-e2e.yaml:

exporter-ca:

		image:	hyperledger/fabric-ca:$IMAGE_TAG

		environment:

				……

				-	FABRIC_CA_SERVER_TLS_KEYFILE=/etc/hyperledger/fabric-ca-server-config/	

cc58284b6af2c33812cfaef9e40b8c911dbbefb83ca2e7564e8fbf5e7039c22e_sk

		……

		command:	sh	-c	'fabric-ca-server	start	--ca.certfile	/etc/hyperledger/fabric-ca-

server-config/ca.exporterorg.trade.com-cert.pem	--ca.keyfile	/etc/hyperledger/fabric-

ca-server-config/cc58284b6af2c33812cfaef9e40b8c911dbbefb83ca2e7564e8fbf5e7039c22e_sk	-b	

admin:adminpw	-d'

As	you	can	see,	the	variable	EXPORTER_CA_PRIVATE_KEY	has	been	replaced	with
cc58284b6af2c33812cfaef9e40b8c911dbbefb83ca2e7564e8fbf5e7039c22e_sk,	both	in	the
environment	variable	and	in	the	command.	If	you	now	examine	the	contents	of
the	crypto-config	folder,	you	will	notice	that	there	exists	a	file	named
cc58284b6af2c33812cfaef9e40b8c911dbbefb83ca2e7564e8fbf5e7039c22e_sk	in	the	folder	crypto-
config/peerOrganizations/exporterorg.trade.com/ca/.	This	file	contains	the	exporter
organization’s	MSP’s	private	(secret)	signing	key.

The	preceding	code	snippet	contains	the	result	of	a	sample	run.	The	key	filename	will	vary
whenever	you	run	the	cryptographic	material	generation	tool.

Let	us	now	look	at	the	configuration	of	an	MSP	in	more	detail,	taking	the
example	of	the	exporter	organization	MSP,	as	specified	in	docker-compose-e2e.yaml:

exporter-ca:

		image:	hyperledger/fabric-ca:$IMAGE_TAG

		environment:

				-	FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server

				-	FABRIC_CA_SERVER_CA_NAME=ca-exporterorg

				-	FABRIC_CA_SERVER_TLS_ENABLED=true

				-	FABRIC_CA_SERVER_TLS_CERTFILE=/etc/hyperledger/fabric-ca-server-

config/ca.exporterorg.trade.com-cert.pem

				-	FABRIC_CA_SERVER_TLS_KEYFILE=/etc/hyperledger/fabric-ca-server-

config/cc58284b6af2c33812cfaef9e40b8c911dbbefb83ca2e7564e8fbf5e7039c22e_sk

		ports:

				-	"7054:7054"

		command:	sh	-c	'fabric-ca-server	start	--ca.certfile	/etc/hyperledger/fabric-ca-

server-config/ca.exporterorg.trade.com-cert.pem	--ca.keyfile	/etc/hyperledger/fabric-

ca-server-config/cc58284b6af2c33812cfaef9e40b8c911dbbefb83ca2e7564e8fbf5e7039c22e_sk	-b	

admin:adminpw	-d'

		volumes:

				-	./crypto-

config/peerOrganizations/exporterorg.trade.com/ca/:/etc/hyperledger/fabric-ca-server-

config

		container_name:	ca_peerExporterOrg

		networks:

				-	trade

The	service	that	will	run	in	the	MSP	is	the	fabric-ca-server,	listening	on	port	7054,
bootstrapped	with	the	certificates	and	keys	created	using	cryptogen,	and	using	the
default	login	and	password	(admin	and	adminpw,	respectively)	configured	in	the
fabric-ca	image.	The	command	to	start	an	instance	of	a	Fabric	CA	server	is	fabric-

ca-server	start	…,	as	you	can	see	in	the	preceding	code.

Peers	as	well	as	CAs	are	configured	for	TLS-based	communication,	as	indicated
in	the	preceding	configurations.	The	reader	must	note	that	if	TLS	is	disabled	in
one,	it	must	be	disabled	in	the	other	too.

Also,	as	can	be	observed	by	examining	docker-compose-e2e.yaml,	we	do	not	create	a
Fabric	CA	server	(and	container)	for	the	orderer’s	organization.	For	the	exercise
we	will	go	through	in	this	book,	statically	created	admin	users	and	credentials
for	the	orderer	are	sufficient;	we	will	not	be	registering	new	orderer	organization
users	dynamically,	so	a	Fabric	CA	server	is	not	needed.

Network	components'	configuration
files
We	have	demonstrated	how	peers,	orderers,	and	CAs	can	be	configured	in
docker-compose	YAML	files.	But	such	configurations	are	meant	to	override
settings	that	have	already	been	made	by	default	in	the	components’	respective
images.	Though	a	detailed	description	of	these	configurations	is	beyond	the
scope	of	this	book,	we	will	list	the	respective	files	and	mention	how	a	user	may
make	changes	to	them.

For	a	peer,	a	core.yaml	file	(https://github.com/hyperledger/fabric/blob/release-1.1/sampl
econfig/core.yaml)	contains	all	of	the	important	runtime	settings,	including	but	not
limited	to	addresses,	port	numbers,	security	and	privacy,	and	the	gossip	protocol.
You	can	create	your	own	file	and	sync	it	to	the	container	using	a
custom	Dockerfile	instead	of	the	one	that	is	used	by	the	hyperledger/fabric-
peer	image	by	default.	If	you	log	in	to	a	running	peer	container	(let’s	take	the
Exporter	organization’s	peer's	container	from	the	network	we	just	launched):

docker	exec	-it	f86e50e6fc76	bash

Then	you	will	find	the	core.yaml	file	in	the	folder	/etc/hyperledger/fabric/.

Similarly,	an	orderer’s	default	configuration	lies	in	an	orderer.yaml	file	(https://gith
ub.com/hyperledger/fabric/blob/release-1.1/sampleconfig/orderer.yaml),	which	is	also
synced	to	/etc/hyperledger/fabric/	on	the	container	running	the	hyperledger/fabric-
orderer	image.	Keep	in	mind	that	both	the	core.yaml	and	orderer.yaml	files	are
synced	to	the	peer	and	orderer	containers,	so	if	you	wish	to	create	custom	files,
you	will	need	to	sync	these	YAML	files	to	both	these	containers.

A	Fabric	CA	server	also	has	a	configuration	file	called	fabric-ca-server-
config.yaml	(http://hyperledger-fabric-ca.readthedocs.io/en/latest/serverconfig.htm),
which	is	synced	to	/etc/hyperledger/fabric-ca-server/	on	the	container	running
the	hyperledger/fabric-ca	image.	You	can	create	and	sync	custom	configurations	as
you	would	for	a	peer	or	an	orderer.

https://github.com/hyperledger/fabric/blob/release-1.1/sampleconfig/core.yaml
https://github.com/hyperledger/fabric/blob/release-1.1/sampleconfig/orderer.yaml
http://hyperledger-fabric-ca.readthedocs.io/en/latest/serverconfig.htm

Launching	a	sample	trade	network
So,	now	that	we	have	all	the	configuration	for	our	network,	and	also	the	channel
artifacts	and	cryptographic	material	required	to	run	it,	all	we	need	to	do	is	start
the	network	using	the	docker-compose	command,	as	follows:

docker-compose	-f	docker-compose-e2e.yaml	up

You	can	run	this	as	a	background	process	and	redirect	the	standard	output	to	a	log
file	if	you	so	choose.	Otherwise,	you	will	see	the	various	containers	starting	up
and	logs	from	each	displayed	on	the	console.

Note	that	on	some	OS	configurations,	setting	up	Fabric	can	be	tricky.	If	you	run	into
problems,	consult	the	documentation.	A	detailed	description	of	how	to	install	a	Fabric
network	and	examples	is	provided	at	https://hyperledger-fabric.readthedocs.io/en/release-1.1/samples.html.

The	network	can	be	launched	in	the	background	using	our	trade.sh	script	as	well;
just	run:

./trade.sh	up

From	a	different	terminal	window,	if	you	run	docker	ps	-a,	you	will	see	something
as	follows:

CONTAINER	ID				IMAGE				COMMAND				CREATED				STATUS				PORTS				NAMES

4e636f0054fc				hyperledger/fabric-peer:latest				"peer	node	start"				3	minutes	ago				

Up	3	minutes				0.0.0.0:9051->7051/tcp,	0.0.0.0:9053->7053/tcp				

peer0.carrierorg.trade.com

28c18b76dbe8				hyperledger/fabric-peer:latest				"peer	node	start"				3	minutes	ago				

Up	3	minutes				0.0.0.0:8051->7051/tcp,	0.0.0.0:8053->7053/tcp				

peer0.importerorg.trade.com

9308ad203362				hyperledger/fabric-ca:latest				"sh	-c	'fabric-ca-se..."				3	minutes	

ago				Up	3	minutes				0.0.0.0:7054->7054/tcp				ca_peerExporterOrg

754018a3875e				hyperledger/fabric-ca:latest				"sh	-c	'fabric-ca-se..."				3	minutes	

ago				Up	3	minutes				0.0.0.0:8054->7054/tcp				ca_peerImporterOrg

09a45eca60d5				hyperledger/fabric-orderer:latest				"orderer"				3	minutes	ago				Up	3	

minutes				0.0.0.0:7050->7050/tcp				orderer.trade.com

f86e50e6fc76				hyperledger/fabric-peer:latest				"peer	node	start"				3	minutes	ago				

Up	3	minutes				0.0.0.0:7051->7051/tcp,	0.0.0.0:7053->7053/tcp				

peer0.exporterorg.trade.com

986c478a522a				hyperledger/fabric-ca:latest				"sh	-c	'fabric-ca-se..."				3	minutes	

ago				Up	3	minutes				0.0.0.0:9054->7054/tcp				ca_peerCarrierOrg

66f90036956a				hyperledger/fabric-peer:latest				"peer	node	start"				3	minutes	ago				

Up	3	minutes				0.0.0.0:10051->7051/tcp,	0.0.0.0:10053->7053/tcp				

peer0.regulatororg.trade.com

a6478cd2ba6f				hyperledger/fabric-ca:latest				"sh	-c	'fabric-ca-se..."				3	minutes	

ago				Up	3	minutes	0.0.0.0:10054->7054/tcp				ca_peerRegulatorOrg

https://hyperledger-fabric.readthedocs.io/en/release-1.1/samples.html

We	have	four	peers,	four	MSPs,	and	an	orderer	running	in	separate	containers.
Our	trade	network	is	up	and	ready	to	run	our	application!

To	view	the	running	logs	of	a	given	container,	note	the	container	ID	(first
column	in	the	preceding	list)	and	simply	run:

docker	logs	<container-ID>

To	bring	the	network	down,	you	can	use	either	the	docker-compose	command:

docker-compose	-f	docker-compose-e2e.yaml	down

Or	our	trade.sh	script:

./trade.sh	down

Summary
In	this	chapter,	we	introduced	the	business	use	case	that	our	follow-on	chapters
will	leverage	to	create	a	context	around	the	code	we	will	write.	We	have	also
deployed	our	first	Hyperledger	Fabric	network	and	have	now	transitioned	from
theory	to	practice.	Well	done!

The	next	chapters	will	take	you	through	the	development	of	a	blockchain
application	from	two	perspectives:	(1)	Foundation	API	using	chaincode	and	the
Fabric	SDK	(2)	Business	network	implementation	using	Hyperledger	Composer.

Through	these	two	perspectives,	we	hope	to	give	you	an	understanding	of	the
flexibility	of	the	solution	and	the	ability	to	leverage	each	tool	in	the	right
context.	To	get	ready	for	the	next	chapter,	you	should	now	stop	your	network
using	./trade.sh	down.

Designing	a	Data	and	Transaction
Model	with	Golang
In	Hyperledger	Fabric,	chaincode	is	a	form	of	a	smart	contract	written	by	a
developer.	Chaincode	implements	a	business	logic	agreed	upon	by	stakeholders
of	the	blockchain	network.	The	functionality	is	exposed	to	client	applications	for
them	to	invoke,	provided	they	have	the	correct	permissions.

Chaincode	runs	as	an	independent	process	in	its	own	container,	isolated	from	the
other	components	of	the	Fabric	network.	An	endorsing	peer	manages	the	lifetime
of	the	chaincode	and	of	the	transaction	invocations.	In	response	to	client
invocations,	the	chaincode	queries	and	updates	the	ledger	and	generates	a
transactions	proposal.

In	this	chapter,	we	will	learn	how	to	develop	chaincode	in	the	Go	language	and
we	will	implement	the	smart	contract	business	logic	of	the	scenario.	Finally,	we
will	explore	the	key	concepts	and	libraries	necessary	for	developing	a	fully
functional	chaincode.

While	in	the	next	sections	we	will	explore	snippets	of	code	related	to	the
concepts	you	can	get	a	complete	implementation	of	the	chaincode	at	the
following	address:

https://github.com/HyperledgerHandsOn/trade-finance-logistics/tree/master/chaincode/src/gi

thub.com/trade_workflow_v1

Note	that	this	is	also	available	in	the	local	git	clone	we	created	in	the	previous	chapter.We
have	two	versions	of	the	chaincode,	one	in	the	trade_workflow	folder	and	another	in	the
trade_workflow_v1	folder.	We	need	two	versions	to	demonstrate	upgrades	later	in	Chapter	9,	Life	in
a	Blockchain	Network.	In	this	chapter,	we	use	the	v1	version	to	demonstrate	how	to	write
chaincode	in	Go.

In	this	chapter,	we	will	be	covering	the	following	topics:

Creating	a	chaincode
Access	control
Implementing	chaincode	functions

https://github.com/HyperledgerHandsOn/trade-finance-logistics/tree/master/chaincode/src/github.com/trade_workflow_v1

Testing	chaincode
Chaincode	design	topics
Logging	output

Starting	the	chaincode	development
Before	we	can	start	coding	our	chaincode,	we	need	to	first	start	up	our
development	environment.

The	steps	of	setting	up	the	development	environment	has	been	explained	in	Chapt
er	3,	Setting	the	Stage	with	a	Business	Scenario.	However,	we	now	proceed	with
starting	up	the	Fabric	network	in	dev-mode.	This	mode	allows	us	to	control	how
we	built	and	run	the	chaincode.	We	will	use	this	network	to	run	our	chaincode	in
the	development	environment.

Here	is	how	we	start	the	Fabric	network	in	dev	mode:

$	cd	$GOPATH/src/trade-finance-logistics/network

$./trade.sh	up	-d	true		

If	you	encounter	any	error	while	the	network	start,	it	could	be	caused	by	some	left-over
Docker	container.	
You	can	resolve	this	by	stopping	the	network	using	./trade.sh	down	-d	true	and	running	the
following	command:	./trade.sh	clean	-d	true.
The	-d	true	option	tells	our	script	to	take	action	on	the	dev	network.

Our	development	network	is	now	running	in	four	Docker	containers.	The
network	is	composed	of	a	single	orderer,	a	single	peer	running	in	devmode,	a
chaincode	container,	and	a	CLI	container.	The	CLI	container	creates	a
blockchain	channel	named	tradechannel	at	startup.	We	will	use	the	CLI	to	interact
with	the	chaincode.

Feel	free	to	inspect	the	log	messages	in	the	logs	directory.	It	lists	the	components
and	functions	executed	during	network	startup.	We	will	keep	the	terminal	open,
as	we	will	receive	further	log	messages	here	once	the	chaincode	has	been
installed	and	invoked.

Compiling	and	running	chaincode
The	cloned	source	code	already	includes	all	dependencies	using	Go	vendoring.
With	that	in	mind,	we	can	now	begin	to	build	the	code	and	to	run	the	chaincode
with	the	following	steps:

1.	 Compile	the	chaincode:	In	a	new	terminal,	connect	to	the	chaincode
container	and	build	the	chaincode	with	the	following	command:

$	docker	exec	-it	chaincode	bash	

$	cd	trade_workflow_v1	

$	go	build	

2.	 Run	the	chaincode	with	the	following	command:

$	CORE_PEER_ADDRESS=peer:7052	CORE_CHAINCODE_ID_NAME=tw:0	./trade_workflow_v1		

We	now	have	a	running	chaincode	connected	to	the	peer.	The	log	messages	here
are	indicating	that	the	chaincode	is	up	and	running.	You	can	also	inspect	log
messages	in	the	network	terminal,	which	list	the	connections	to	the	chaincode	on
the	peer.

Installing	and	instantiating	chaincode
We	now	need	to	install	the	chaincode	on	the	channel	before	we	initiate	it,	which
will	invoke	the	method	Init:

1.	 Installing	the	chaincode:	In	a	new	terminal,	connect	to	the	CLI	container
and	install	the	chaincode	with	the	name	tw,	as	follows:

$	docker	exec	-it	cli	bash	

$	peer	chaincode	install	-p	chaincodedev/chaincode/trade_workflow_v1	-n	tw	-v	0

2.	 Now,	instantiate	the	following	chaincode:

$	peer	chaincode	instantiate	-n	tw	-v	0	-c	'{"Args":

["init","LumberInc","LumberBank","100000","WoodenToys","ToyBank","200000","UniversalFreight","ForestryDepartment"]}'

	-C	tradechannel	

The	CLI-connected	terminal	now	contains	a	list	of	log	messages	of	the
interaction	with	the	chaincode.	The	chaincode	terminal	shows	messages	from
the	chaincode	method	invocation	and	the	network	terminal	show	messages	from
communication	between	the	peer	and	the	orderer.

Invoking	chaincode
Now	we	have	a	running	chaincode,	we	can	start	to	invoke	some	functions.	Our
chaincode	has	several	methods	that	create	and	retrieve	assets.	For	now,	we	will
only	invoke	two	of	them;	the	first	creates	a	new	trade	agreement	and	the	second
retrieves	it	from	the	ledger.	To	do	this,	complete	the	following	steps:

1.	 Put	a	new	trade	agreement	on	the	ledger	with	the	following	command:

$	peer	chaincode	invoke	-n	tw	-c	'{"Args":["requestTrade",	"50000",	"Wood	for	

Toys"]}'	-C	tradechannel

2.	 Retrieve	the	trade	agreement	from	the	ledger	with	the	following	command:

$	peer	chaincode	invoke	-n	tw	-c	'{"Args":["getTradeStatus",	"50000"]}'	-C	

tradechannel

We	now	have	a	running	network	in	devmode	and	we	have	tested	our	chaincode
successfully.	In	the	following	section,	we	will	learn	how	to	create	and	test
chaincode	from	scratch.

Dev	Mode
In	a	production	environment,	the	lifetime	of	the	chaincode	is	managed	by	the	peer.	When	we
need	to	repeatedly	modify	and	test	the	chaincode	in	a	development	environment,	we	can
use	devmode,	which	allows	the	developer	to	control	the	life	cycle	of	the	chaincode.	Additionally,
devmode	directs	the	stdout	and	stderr	standard	files	into	the	terminal;	these	are	otherwise
disabled	in	a	production	environment.

To	use	devmode,	the	peer	must	be	connected	to	other	network	components,	as	in	a
production	environment,	and	started	with	the	argument	peer-chaincodedev=true.	The
chaincode	is	then	started	separately	and	configured	to	connect	to	the	peer.	The
chaincode	can	be	repeatedly	compiled,	started,	invoked,	and	stopped	as	needed
from	the	terminal	during	development.

We	will	use	the	devmode	enabled	network	in	the	following	sections.

Creating	a	chaincode
We	are	now	ready	to	start	to	implementing	our	chaincode,	which	we	will
program	in	the	Go	language.	There	are	several	IDEs	available	that	provide
support	for	Go.	Some	of	the	better	IDEs	include	Atom,	Visual	Studio	Code,	and
many	more.	Whatever	environment	you	opt	for	will	work	with	our	example.

The	chaincode	interface
Every	chaincode	must	implement	the	Chaincode	interface,	whose	methods	are
called	in	response	to	the	received	transaction	proposals.	The	Chaincode	interface
defined	in	the	SHIM	package	is	shown	in	the	following	listing:

type	Chaincode	interface	{	

				Init(stub	ChaincodeStubInterface)	pb.Response	

				Invoke(stub	ChaincodeStubInterface)	pb.Response	

}	

As	you	can	see,	the	Chaincode	type	defines	two	functions:	Init	and	Invoke.

Both	functions	have	a	single	argument,	stub,	of	the	type	ChaincodeStubInterface.

The	stub	argument	is	the	main	object	that	we	will	use	when	implementing	the
chaincode	functionality,	as	it	provides	functions	for	accessing	and	modifying	the
ledger,	obtaining	invocation	arguments,	and	so	on.

Additionally,	the	SHIM	package	provides	other	types	and	functions	in	order	to
build	chaincodes;	you	can	inspect	the	whole	package	at:	https://godoc.org/github.co
m/hyperledger/fabric/core/chaincode/shim.

https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim

Setting	up	the	chaincode	file
Let's	now	set	up	the	chaincode	file.

We	will	work	with	the	folder	structure	cloned	from	GitHub.	The	chaincode	files
are	located	in	the	following	folder:

$GOPATH/src/trade-finance-logistics/chaincode/src/github.com/trade_workflow_v1

You	can	either	follow	the	steps	and	inspect	the	code	files	in	the	folder,	or	you
can	create	a	new	folder	and	create	the	code	files	as	described.

1.	 First,	we	need	to	create	the	chaincode	file

In	your	favorite	editor,	create	a	file,	tradeWorkflow.go,	and	include	the
following	package	and	import	statements:

package	main

import	(

				"fmt"

				"errors"

				"strconv"

				"strings"

				"encoding/json"

				"github.com/hyperledger/fabric/core/chaincode/shim"

				"github.com/hyperledger/fabric/core/chaincode/lib/cid"

				pb	"github.com/hyperledger/fabric/protos/peer"

)

In	the	preceding	snippet,	we	can	see	that	lines	4	to	8	import	the	Go
language	system	packages,	and	lines	9	to	11	import	the	shim,	cid,	and
pb	Fabric	packages.	The	pb	package	provides	the	definition	of	peer	protobuf
types	and	cid	provides	access	control	functions.	We	will	take	a	closer
look	at	CID	in	the	section	on	access	control.

2.	 Now	we	need	to	define	the	Chaincode	type.	Let's	add	the	TradeWorkflowChaincode
type	that	will	implement	the	chaincode	functions,	as	shown	in	the	following
snippet:

type	TradeWorkflowChaincode	struct	{

				testMode	bool

}

Make	note	of	the	testMode	field	in	line	2.	We	will	use	this	feld	to
circumvent	access	control	checks	during	testing.

3.	 The	TradeWorkflowChaincode	is	required	in	order	to	implement	the	shim.Chaincode
interface.	The	methods	of	the	interface	must	be	implemented	in	order
for	TradeWorkflowChaincode	to	be	a	valid	Chaincode	type	of	the	shim	package.

4.	 The	Init	method	is	called	once	the	chaincode	has	been	installed	onto	the
blockchain	network.	It	is	executed	only	once	by	each	endorsement	peer	that
deploys	its	own	instance	of	the	chaincode.	This	method	can	be	used	for
initialization,	bootstrapping,	and	in	setting	up	the	chaincode.	A	default
implementation	of	the	Init	method	is	shown	in	the	following	snippet.	Note
that	the	method	in	line	3	writes	a	line	into	a	standard	output	to	report	its
invocation.	In	line	4,	the	method	returns	a	result	of	the	invocation	of	the
function	shim.	Success	with	an	argument	value	of	nil	signals	a	successful
execution	with	an	empty	result,	as	shown	as	follows:

//	TradeWorkflowChaincode	implementation

func	(t	*TradeWorkflowChaincode)	Init(stub	SHIM.ChaincodeStubInterface)									

pb.Response	{

				fmt.Println("Initializing	Trade	Workflow")

				return	shim.Success(nil)

}

An	invocation	of	a	chaincode	method	must	return	an	instance	of	the
pb.Response	object.	The	following	snippet	lists	the	two	helper	functions
from	the	SHIM	package	to	create	the	response	object.	The	following
functions	serialize	the	response	into	a	gRPC	protobuf	message:

//	Creates	a	Response	object	with	the	Success	status	and	with	argument	of	a	

'payload'	to	return

//	if	there	is	no	value	to	return,	the	argument	'payload'	should	be	set	to	

'nil'

func	shim.Success(payload	[]byte)

//	creates	a	Response	object	with	the	Error	status	and	with	an	argument	of	a	

message	of	the	error

func	shim.Error(msg	string)

5.	 It's	now	time	to	move	on	to	the	invocation	arguments.	Here,	the	method
will	retrieve	the	arguments	of	the	invocation	using	the
stub.GetFunctionAndParameters	function	and	validate	that	the	expected	number
of	arguments	has	been	provided.	The	Init	method	expects	to	either	receive
no	arguments	and	therefore	leaves	the	ledger	as	it	is.	This	happens	when	the
Init	function	is	invoked	because	the	chaincode	is	upgraded	on	the	ledger	to
a	newer	version.	When	the	chaincode	is	installed	for	a	first	time,	it	expects

to	receive	eight	arguments	that	include	details	of	the	participants,	which
will	be	recorded	as	initial	states.	If	an	incorrect	number	of	arguments	is
provided,	the	method	will	return	an	error.	The	codeblock	validating
arguments	is	as	follows:

_,	args	:=	stub.GetFunctionAndParameters()

var	err	error

//	Upgrade	Mode	1:	leave	ledger	state	as	it	was

if	len(args)	==	0	{

		return	shim.Success(nil)

}

//	Upgrade	mode	2:	change	all	the	names	and	account	balances

if	len(args)	!=	8	{

	err	=	errors.New(fmt.Sprintf("Incorrect	number	of	arguments.	Expecting	8:	{"	+

													"Exporter,	"	+

													"Exporter's	Bank,	"	+

													"Exporter's	Account	Balance,	"	+

													"Importer,	"	+

													"Importer's	Bank,	"	+

													"Importer's	Account	Balance,	"	+

													"Carrier,	"	+

													"Regulatory	Authority"	+

													"}.	Found	%d",	len(args)))

		return	shim.Error(err.Error())

}

As	we	can	see	in	the	preceding	snippet,	when	the	expected	number	of
arguments	containing	the	names	and	roles	of	the	participants	is	provided,
the	method	validates	and	casts	the	arguments	into	the	correct	data	types
and	records	them	onto	the	ledger	as	an	initial	state.

In	the	following	snippet,	in	lines	2	and	7,	the	method	casts	the	arguments
into	an	integer.	If	the	cast	fails,	it	returns	an	error.	In	line	14,	a	string
array	is	constructed	from	string	constants.	Here,	we	refer	to	lexical
constants	as	defined	in	the	file	constants.go,	which	is	located	in	the
chaincode	folder.	The	constants	represent	keys	under	which	the	initial
values	will	be	recorded	into	the	ledger.	Finally,	in	line	16	for	each	of	the
constants	one	record	(asset)	is	written	onto	the	ledger.	The	function
stub.PutState	records	a	key	and	value	pair	onto	the	ledger.

Note,	that	data	on	the	ledger	is	stored	as	an	array	of	bytes;	any	data	we
want	to	store	on	the	ledger	must	be	first	converted	into	a	byte	array,	as
you	can	see	in	the	following	snippet:

//	Type	checks

_,	err	=	strconv.Atoi(string(args[2]))

if	err	!=	nil	{

				fmt.Printf("Exporter's	account	balance	must	be	an	integer.	Found	%s\n",	

args[2])

				return	shim.Error(err.Error())

}

_,	err	=	strconv.Atoi(string(args[5]))

if	err	!=	nil	{

				fmt.Printf("Importer's	account	balance	must	be	an	integer.	Found	%s\n",	

args[5])

				return	shim.Error(err.Error())

}

//	Map	participant	identities	to	their	roles	on	the	ledger

roleKeys	:=	[]string{	expKey,	ebKey,	expBalKey,	impKey,	ibKey,	impBalKey,	

carKey,	raKey	}

for	i,	roleKey	:=	range	roleKeys	{

				err	=	stub.PutState(roleKey,	[]byte(args[i]))

				if	err	!=	nil	{

								fmt.Errorf("Error	recording	key	%s:	%s\n",	roleKey,	err.Error())

								return	shim.Error(err.Error())

				}

}

The	Invoke	method
The	Invoke	method	is	invoked	whenever	the	state	of	the	blockchain	is	queried	or
modified.

All	create,	read,	update,	and	delete	(CRUD)	operations	on	the	assets	held	on
the	ledger	are	encapsulated	by	the	Invoke	method.

The	invocation	of	this	method	happens	when	a	transaction	is	created	by	the
invoking	client.	When	the	ledger	is	queried	for	the	state	(that	is,	one	or	more
assets	are	retrieved	but	the	state	of	the	ledger	is	not	modified),	the	contextual
transaction	will	be	discarded	by	the	client	after	receiving	the	response	of	Invoke.
Once	the	ledger	has	been	modified,	the	modifications	will	be	recorded	into	the
transaction.	After	receiving	a	response	for	the	transaction	to	be	recorded	on	the
ledger,	the	client	will	submit	that	transaction	to	an	ordering	service.	An	empty
Invoke	method	is	shown	in	the	following	snippet:

func	(t	*TradeWorkflowChaincode)	Invoke(stub	shim.ChaincodeStubInterface)	pb.Response	{

				fmt.Println("TradeWorkflow	Invoke")

}

Typically,	the	implementation	of	chaincode	will	contain	multiple	queries	and
modification	functions.	If	these	functions	are	very	simple,	they	can	be	directly
implemented	in	the	body	of	the	Invoke	method.	However,	a	more	elegant	solution
is	to	implement	each	function	independently	and	then	invoke	them	from	the
Invoke	method.

The	SHIM	API	provides	several	functions	for	retrieving	the	invocation
arguments	of	the	Invoke	method.	These	are	listed	in	the	following	snippet.	It	is	up
to	the	developer	to	choose	the	meaning	and	order	of	the	arguments;	however,	it
is	customary	for	the	first	argument	of	the	Invoke	method	to	be	the	name	of	the
function,	with	the	following	arguments	the	arguments	of	that	function.

//	Returns	the	first	argument	as	the	function	name	and	the	rest	of	the	arguments	as	

parameters	in	a	string	array.

//	The	client	must	pass	only	arguments	of	the	type	string.

func	GetFunctionAndParameters()	(string,	[]string)

//	Returns	all	arguments	as	a	single	string	array.

//	The	client	must	pass	only	arguments	of	the	type	string.

func	GetStringArgs()	[]string

//	Returns	the	arguments	as	an	array	of	byte	arrays.

func	GetArgs()	[][]byte

//	Returns	the	arguments	as	a	single	byte	array.

func	GetArgsSlice()	([]byte,	error)

In	the	following	snippet,	the	arguments	of	the	invocation	are	retrieved	in	line	1
using	the	stub.GetFunctionAndParameters	function.	From	line	3	onwards,	a	series	of
if	conditions	pass	the	execution,	along	with	the	arguments,	into	the	requested
function	(requestTrade,	acceptTrade,	and	so	on).	Each	of	these	functions	implement
their	functionality	separately.	If	a	non-existent	function	is	requested,	the	method
returns	an	error	indicating	that	the	requested	function	does	not	exist,	as	shown	in
line	18:

				function,	args	:=	stub.GetFunctionAndParameters()

				if	function	==	"requestTrade"	{

								//	Importer	requests	a	trade

								return	t.requestTrade(stub,	creatorOrg,	creatorCertIssuer,	args)

				}	else	if	function	==	"acceptTrade"	{

								//	Exporter	accepts	a	trade

								return	t.acceptTrade(stub,	creatorOrg,	creatorCertIssuer,	args)

				}	else	if	function	==	"requestLC"	{

								//	Importer	requests	an	L/C

								return	t.requestLC(stub,	creatorOrg,	creatorCertIssuer,	args)

				}	else	if	function	==	"issueLC"	{

								//	Importer's	Bank	issues	an	L/C

								return	t.issueLC(stub,	creatorOrg,	creatorCertIssuer,	args)

				}	else	if	function	==	"acceptLC"	{

		...

		return	shim.Error("Invalid	invoke	function	name")

As	you	can	see,	the	Invoke	method	is	a	suitable	place	for	any	shared	code	that	is
needed	for	extracting	and	validating	arguments	that	will	be	used	by	the	requested
functions.	In	the	following	section,	we	will	look	at	the	access	control	mechanism
and	place	some	of	the	shared	access	control	code	into	the	Invoke	method.

Access	control
Before	we	delve	into	the	implementation	of	Chaincode	functions,	we	need	to	first
define	our	access	control	mechanism.

A	key	feature	of	a	secure	and	permissioned	blockchain	is	access	control.	In
Fabric,	the	Membership	Services	Provider	(MSP)	plays	a	pivotal	role	in
enabling	access	control.	Each	organization	of	a	Fabric	network	can	have	one	or
more	MSP	providers.	The	MSP	is	implemented	as	a	Certificate	Authority
(Fabric	CA).	More	information	on	Fabric	CA,	including	its	documentation,	is
available	at:	https://hyperledger-fabric-ca.readthedocs.io/.

Fabric	CA	issues	Enrollment	Certificates	(ecerts)	for	network	users.	The	ecert
represents	the	identity	of	the	user	and	is	used	as	a	signed	transaction	when	a	user
submits	to	Fabric.	Prior	to	invoking	a	transaction,	the	user	must	therefore	first
register	and	obtain	an	ecert	from	the	Fabric	CA.

Fabric	supports	an	Attribute-based	Access	Control	(ABAC)	mechanism	that
can	be	used	by	the	chaincode	to	control	access	to	its	functions	and	data.	The
ABAC	allows	the	chaincode	to	make	access	control	decisions	based	on	attributes
associated	with	user	identity.	Users	with	an	ecert	can	also	access	a	series	of
additional	attributes	(that	is,	name/value	pairs).

During	invocation,	the	chaincode	will	extract	the	attributes	and	make	an	access
control	decision.	We	will	take	a	closer	look	at	the	ABAC	mechanism	in	the
upcoming	chapters.

https://hyperledger-fabric-ca.readthedocs.io/

ABAC
In	the	following	steps,	we	will	show	you	how	to	register	a	user	and	create	an
ecert	with	attributes.	We	will	then	retrieve	the	user	identity	and	the	attributes	in
the	chaincode	to	validate	access	control.	We	will	then	integrate	this	functionality
into	our	tutorial	chaincode.

First,	we	must	register	a	new	user	with	the	Fabric	CA.	As	part	of	the	registration
process,	we	have	to	define	the	attributes	that	will	be	used	once	the	ecert	is
generated.	A	user	is	registered	by	running	the	command,	fabric-ca-client	register.
The	access	control	attributes	are	added	by	using	the	suffix	:ecert.

Registering	a	user
These	steps	are	informational	only	and	cannot	be	executed.	For	more	information	you	can
refer	to	the	GitHub	repository	https://github.com/HyperledgerHandsOn/trade-finance-logistics/blob/master/chainc
ode/abac.md	

Let's	now	register	a	user	with	a	custom	attribute	named	importer	and	the	value
true.	Note	that	the	value	of	the	attribute	can	be	of	any	type	and	is	not	limited	to
Boolean	values,	as	shown	in	the	following	snippet:

fabric-ca-client	register	--id.name	user1	--id.secret	pwd1	--id.type	user	--

id.affiliation	ImporterOrgMSP	--id.attrs	'importer=true:ecert'

The	previous	snippet	shows	us	the	command	line	when	registering	a	user	with
the	attribute	importer=true.	Note	that	the	values	of	id.secret	and	other	arguments
depend	on	the	Fabric	CA	configuration.

The	preceding	command	can	also	define	multiple	default	attributes	at	once,	such
as:	--id.attrs	and	importer=true:ecert,email=user1@gmail.com.

The	following	table	contains	the	default	attributes	used	during	user	registration:

Attribute	name Command	line
argument Attribute	value

hf.EnrollmentID (automatic) The	enrollment	ID	of	the
identity

hf.Type	 id.type	 The	type	of	the	identity

hf.Affiliation	 id.affiliation	 The	affiliation	of	the	identity

	

If	any	of	the	previous	attributes	are	needed	in	ecert,	they	must	be	first	defined	in
the	user	registration	command.	For	example,	the	following	command	registers
user1	with	the	attribute	hf.Affiliation=ImporterOrgMSP,	which	will	be	copied	into	ecert
by	default:

https://github.com/HyperledgerHandsOn/trade-finance-logistics/blob/master/chaincode/abac.md

fabric-ca-client	register	--id.name	user1	--id.secret	pwd1	--id.type	user	--

id.affiliation	ImporterOrgMSP	--id.attrs	

'importer=true:ecert,hf.Affiliation=ImporterOrgMSP:ecert'

Enrolling	a	user
Here,	we	will	enroll	the	user	and	create	the	ecert.	enrollment.attrs	defines	which
attributes	will	be	copied	into	the	ecert	from	user	registration.	The	suffix	opt
defines	which	attributes	of	those	copied	from	registration	are	optional.	If	one	or
more	non-optional	attributes	are	not	defined	on	the	user	registration,	the
enrollment	will	fail.	The	following	command	will	enroll	a	user	with	the	attribute
importer:

fabric-ca-client	enroll	-u	http://user1:pwd1@localhost:7054	--enrollment.attrs	

"importer,email:opt"

Retrieving	user	identities	and
attributes	in	chaincode
In	this	step,	we	will	retrieve	a	user's	identity	during	the	execution	of	the
chaincode.	The	ABAC	functionality	available	to	chaincode	is	provided	by
the	Client	Identity	Chaincode	(CID)	library.

Every	transaction	proposal	submitted	to	the	chaincode	carries	along	with	it	the
ecert	of	the	invoker	–the	user	submitting	the	transaction.	The	chaincode	has
access	to	the	ecert	through	importing	the	CID	library	and	invoking	the	library
functions	with	the	argument	ChaincodeStubInterface,	that	is,	the	argument
stub	received	in	both	the	Init	and	Invoke	methods.

The	chaincode	can	use	the	certificate	to	extract	information	about	the	invoker,
including:

The	ID	of	the	invoker
The	unique	ID	of	the	Membership	Service	Provider	(MSP)	which	issued
the	invoker	certificate
The	standard	attributes	of	the	certificate,	such	as	its	domain	name,	email,
and	so	on
The	ecert	attributes	associated	with	the	client	identity,	stored	within	the
certificate

The	functions	provided	by	the	CID	library	are	listed	in	the	following	snippet:

//	Returns	the	ID	associated	with	the	invoking	identity.	

//	This	ID	is	unique	within	the	MSP	(Fabric	CA)	which	issued	the	identity,	

however,	it	is	not	guaranteed	to	be	unique	across	all	MSPs	of	the	network.	

func	GetID()	(string,	error)	

	

//	Returns	the	unique	ID	of	the	MSP	associated	with	the	identity	that	submitted	

the	transaction.	

//	The	combination	of	the	MSPID	and	of	the	identity	ID	are	guaranteed	to	be	

unique	across	the	network.	

func	GetMSPID()	(string,	error)	

	

//	Returns	the	value	of	the	ecert	attribute	named	`attrName`.	

//	If	the	ecert	has	the	attribute,	the	`found`	returns	true	and	the	`value`	

returns	the	value	of	the	attribute.	

//	If	the	ecert	does	not	have	the	attribute,	`found`	returns	false	and	`value`	

returns	empty	string.	

func	GetAttributeValue(attrName	string)	(value	string,	found	bool,	err	error)	

	

//	The	function	verifies	that	the	ecert	has	the	attribute	named	`attrName`	and	

that	the	attribute	value	equals	to	`attrValue`.	

//	The	function	returns	nil	if	there	is	a	match,	else,	it	returns	error.	

func	AssertAttributeValue(attrName,	attrValue	string)	error	

	

//	Returns	the	X509	identity	certificate.	

//	The	certificate	is	an	instance	of	a	type	Certificate	from	the	library	

"crypto/x509".	

func	GetX509Certificate()	(*x509.Certificate,	error)		

In	the	following	codeblock,	we	define	a	function,	getTxCreatorInfo,	which	obtains
basic	identity	information	about	the	invoker.	First,	we	must	import	the	CID	and
x509	libraries,	as	seen	in	lines	3	and	4.	The	unique	MSPID	is	retrieved	in	line	13
and	the	X509	certificate	is	obtained	in	line	19.	In	line	24,	we	then	retrieve	the
CommonName	of	the	certificate,	which	contains	the	unique	string	of	the	Fabric	CA
within	the	network.	These	two	attributes	are	returned	by	the	function	and	used	in
subsequent	access	control	validation,	as	shown	in	the	following	snippet:

import	(

			"fmt"	

			"github.com/hyperledger/fabric/core/chaincode/shim"	

			"github.com/hyperledger/fabric/core/chaincode/lib/cid"	

			"crypto/x509"	

)	

	

func	getTxCreatorInfo(stub	shim.ChaincodeStubInterface)	(string,	string,	error)	{	

			var	mspid	string	

			var	err	error	

			var	cert	*x509.Certificate	

	

			mspid,	err	=	cid.GetMSPID(stub)	

			if	err	!=	nil	{	

									fmt.Printf("Error	getting	MSP	identity:	%sn",	err.Error())	

									return	"",	"",	err	

			}	

	

			cert,	err	=	cid.GetX509Certificate(stub)	

			if	err	!=	nil	{	

									fmt.Printf("Error	getting	client	certificate:	%sn",	err.Error())	

									return	"",	"",	err	

			}	

	

			return	mspid,	cert.Issuer.CommonName,	nil	

}

We	now	need	to	define	and	implement	the	simple	access	control	policy	in	our
chaincode.	Each	function	of	the	chaincode	can	only	be	invoked	by	members	of	a
specific	organization;	each	chaincode	function	will	therefore	validate	whether
the	invoker	is	a	member	of	the	required	organization.	For	example,	the	function
requestTrade	can	be	invoked	only	by	members	of	the	Importer	organization.	In	the
following	snippet,	the	function	authenticateImporterOrg	validates	whether	the

invoker	is	a	member	of	ImporterOrgMSP.	This	function	then	will	be	invoked	from
the	requestTrade	function	to	enforce	access	control.

func	authenticateExportingEntityOrg(mspID	string,	certCN	string)	bool	{

				return	(mspID	==	"ExportingEntityOrgMSP")	&&	(certCN	==	

"ca.exportingentityorg.trade.com")

}

func	authenticateExporterOrg(mspID	string,	certCN	string)	bool	{

return	(mspID	==	"ExporterOrgMSP")	&&	(certCN	==	"ca.exporterorg.trade.com")

}

func	authenticateImporterOrg(mspID	string,	certCN	string)	bool	{

				return	(mspID	==	"ImporterOrgMSP")	&&	(certCN	==	"ca.importerorg.trade.com")

}

func	authenticateCarrierOrg(mspID	string,	certCN	string)	bool	{

				return	(mspID	==	"CarrierOrgMSP")	&&	(certCN	==	"ca.carrierorg.trade.com")

}

func	authenticateRegulatorOrg(mspID	string,	certCN	string)	bool	{

				return	(mspID	==	"RegulatorOrgMSP")	&&	(certCN	==	"ca.regulatororg.trade.com")

}

In	the	following	snippet	is	shown	the	invocation	of	access	control	validation,
which	has	granted	access	only	to	members	of	ImporterOrgMSP.	The	function	is
invoked	with	the	arguments	obtained	from	the	getTxCreatorInfo	function.

creatorOrg,	creatorCertIssuer,	err	=	getTxCreatorInfo(stub)

if	!authenticateImporterOrg(creatorOrg,	creatorCertIssuer)	{

				return	shim.Error("Caller	not	a	member	of	Importer	Org.	Access	denied.")

}

Now,	we	need	to	place	our	authentication	functions	into	a	separate
file,	accessControlUtils.go,	which	is	located	in	the	same	directory	as	the	main
tradeWorkflow.go	file.	This	file	will	be	automatically	imported	into	the	main
chaincode	file	during	compilation	so	we	can	refer	to	the	functions	defined	in	it.

Implementing	chaincode	functions
At	this	point,	we	now	have	the	basic	building	blocks	of	chaincode.	We	have	the
Init	method,	which	initiates	the	chaincode	and	the	Invoke	method,	which	receives
request	from	the	client	and	the	access	control	mechanism.	Now,	we	need	to
define	the	functionality	of	the	chaincode.

Based	on	our	scenario,	the	following	tables	summarize	the	list	of	functions	that
record	and	retrieve	data	to	and	from	the	ledger	to	provide	the	business	logic	of
the	smart	contract.	The	tables	also	define	the	access	control	definitions	of
organization	member,	which	are	needed	in	order	to	invoke	the	respective
functions.

The	following	table	illustrates	the	chaincode	modification	functions,	that	is,	how
to	record	transactions	on	the	ledger:

Function	name Permission	to
invoke Description

requestTrade Importer Requests	a	trade	agreement

acceptTrade Exporter Accepts	a	trade	agreement

requestLC Importer Requests	a	letter	of	credit

issueLC Importer Issues	a	letter	of	credit

acceptLC Exporter Accepts	a	letter	of	credit

requestEL Exporter Requests	an	export	license

issueEL Regulator Issues	an	export	license

prepareShipment Exporter Prepares	a	shipment

acceptShipmentAndIssueBL Carrier Accepts	a	shipment	and	issue	a
bill	of	lading

requestPayment Exporter Requests	a	payment

makePayment Importer Makes	a	payment

updateShipmentLocation Carrier Updates	shipment	location

The	following	table	illustrates	the	chaincode	query	functions,	that	is,	those
needed	to	retrieve	data	from	the	ledger:

Function	name Permission	to	invoke Description

getTradeStatus Exporter/ExportingEntity/Importer

Gets	current
state	of	a
trade
agreement

getLCStatus Exporter/ExportingEntity/Importer

Get	current
state	of	a

Letter	of
Credit

getELStatus ExportingEntity/Regulator

Get	current
state	of	an
Export
License

getShipmentLocation Exporter/ExportingEntity/Importer/Carrier
Get	current
location	of
a	shipment

getBillOfLading Exporter/ExportingEntity/Importer Get	the	bill
of	lading

getAccountBalance Exporter/ExportingEntity/Importer

Get	current
account
balance	for
a	given
participant

Defining	chaincode	assets
We	are	now	going	to	define	the	structure	of	our	assets,	which	will	be	recorded
onto	the	ledger.	In	Go,	the	assets	are	defined	as	struct	types	with	a	list	of
attribute	names	and	types.	The	definitions	also	need	to	contain	JSON	attribute
names,	which	will	be	used	to	serialize	the	assets	into	the	JSON	objects.	In	the
following	snippet,	you	will	see	definitions	for	four	assets	in	our	application.
Note	that,	the	attributes	of	structs	can	encapsulate	other	structs	and	thus	allow	to
create	multi-level	trees.

type	TradeAgreement	struct	{	

			Amount																				int															`json:"amount"`	

			DescriptionOfGoods								string												`json:"descriptionOfGoods"`	

			Status																				string												`json:"status"`	

			Payment																			int															`json:"payment"`	

}	

	

type	LetterOfCredit	struct	{	

			Id																								string												`json:"id"`	

			ExpirationDate												string												`json:"expirationDate"`	

			Beneficiary															string												`json:"beneficiary"`	

			Amount																				int															`json:"amount"`	

			Documents																	[]string										`json:"documents"`	

			Status																				string												`json:"status"`	

}	

	

type	ExportLicense	struct	{	

			Id																								string												`json:"id"`	

			ExpirationDate												string												`json:"expirationDate"`	

			Exporter																		string												`json:"exporter"`	

			Carrier																			string												`json:"carrier"`	

			DescriptionOfGoods								string												`json:"descriptionOfGoods"`	

			Approver																		string												`json:"approver"`	

			Status																				string												`json:"status"`	

}	

	

type	BillOfLading	struct	{	

			Id																								string												`json:"id"`	

			ExpirationDate												string												`json:"expirationDate"`	

			Exporter																		string												`json:"exporter"`	

			Carrier																			string												`json:"carrier"`	

			DescriptionOfGoods								string												`json:"descriptionOfGoods"`	

			Amount																				int															`json:"amount"`	

			Beneficiary															string												`json:"beneficiary"`	

			SourcePort																string												`json:"sourcePort"`	

			DestinationPort											string												`json:"destinationPort"`	

}		

Coding	chaincode	functions
In	this	section,	we	will	implement	the	chaincode	functions	we	looked	at
previously.	To	implement	the	chaincode	functions,	we	will	use	three	SHIM	API
functions	that	will	read	assets	from	the	Worldstate	and	record	changes.	As	we
have	already	learned,	reads	and	writes	of	these	functions	are	recorded	into	ReadSet
and	WriteSet	respectively,	and	the	changes	do	not	affect	the	state	of	the	ledger
immediately.	Only	after	the	transaction	has	passed	through	validation	and	has
been	committed	into	the	ledger	will	the	changes	take	effect.

The	following	snippet	shows	a	list	of	asset	API	functions:

//	Returns	the	value	of	the	`key`	from	the	Worldstate.	

//	If	the	key	does	not	exist	in	the	Worldstate	the	function	returns	(nil,	nil).	

//	The	function	does	not	read	data	from	the	WriteSet	and	hence	uncommitted	values	

modified	by	PutState	are	not	returned.	

func	GetState(key	string)	([]byte,	error)	

	

//	Records	the	specified	`key`	and	`value`	into	the	WriteSet.	

//	The	function	does	not	affect	the	ledger	until	the	transaction	is	committed	into	the	

ledger.	

func	PutState(key	string,	value	[]byte)	error	

	

//	Marks	the	the	specified	`key`	as	deleted	in	the	WriteSet.	

//	The	key	will	be	marked	as	deleted	and	removed	from	Worldstate	once	the	transaction	

is	committed	into	the	ledger.	

func	DelState(key	string)	error

Creating	an	asset
Now	that	we	can	implement	our	first	chaincode	function,	we	will	move	on	and
implement	a	requestTrade	function,	which	will	create	a	new	trade	agreement	with
the	status	REQUESTED	and	then	record	that	agreement	on	the	ledger.

The	implementation	of	the	function	is	shown	in	the	following	snippet.	As	you
will	see,	in	line	9	we	verify	that	the	invoker	is	a	member	of	ImporterOrg	and	has
permission	to	invoke	the	function.	From	lines	13	to	21	we	validate	and	extract
the	arguments.	In	line	23,	we	create	a	new	instance	of	TradeAgreement	initiated	with
the	received	arguments.	As	we	learned	earlier,	the	ledger	stores	values	in	the
form	of	arrays	of	bytes.	Thus,	in	line	24	we	serialize	TradeAgreement	with	JSON
into	an	array	of	bytes.	In	line	32,	we	create	a	unique	key,	under	which	we	will
store	TradeAgreement.	Finally,	in	line	37,	we	use	the	key	and	serialized	TradeAgreement
alongside	the	function	PutState	to	store	the	value	into	the	WriteSet.

The	following	snippet	illustrates	the	requestTrade	function:

func	(t	*TradeWorkflowChaincode)	requestTrade(stub	shim.ChaincodeStubInterface,	

creatorOrg	string,	creatorCertIssuer	string,	args	[]string)	pb.Response	{	

			var	tradeKey	string	

			var	tradeAgreement	*TradeAgreement	

			var	tradeAgreementBytes	[]byte	

			var	amount	int	

			var	err	error	

	

			//	Access	control:	Only	an	Importer	Org	member	can	invoke	this	transaction	

			if	!t.testMode	&&	!authenticateImporterOrg(creatorOrg,	creatorCertIssuer)	{	

									return	shim.Error("Caller	not	a	member	of	Importer	Org.	Access	denied.")	

			}	

	

			if	len(args)	!=	3	{	

									err	=	errors.New(fmt.Sprintf("Incorrect	number	of	arguments.	Expecting	3:	{ID,	

Amount,	Description	of	Goods}.	Found	%d",	len(args)))	

									return	shim.Error(err.Error())	

			}	

	

			amount,	err	=	strconv.Atoi(string(args[1]))	

			if	err	!=	nil	{	

									return	shim.Error(err.Error())	

			}	

	

			tradeAgreement	=	&TradeAgreement{amount,	args[2],	REQUESTED,	0}	

			tradeAgreementBytes,	err	=	json.Marshal(tradeAgreement)	

			if	err	!=	nil	{	

									return	shim.Error("Error	marshaling	trade	agreement	structure")	

			}	

	

			//	Write	the	state	to	the	ledger	

			tradeKey,	err	=	getTradeKey(stub,	args[0])	

			if	err	!=	nil	{	

									return	shim.Error(err.Error())	

			}	

			err	=	stub.PutState(tradeKey,	tradeAgreementBytes)	

			if	err	!=	nil	{	

									return	shim.Error(err.Error())	

			}	

			fmt.Printf("Trade	%s	request	recorded",	args[0])	

	

			return	shim.Success(nil)	

}		

Reading	and	modifying	an	asset
After	we	have	implemented	the	function	to	create	a	trade	agreement,	we	need	to
implement	a	function	to	accept	the	trade	agreement.	This	function	will	retrieve
the	agreement,	modify	its	status	to	ACCEPTED,	and	put	it	back	on	the	ledger.

The	implementation	of	this	function	is	shown	in	the	following	snippet.	In	the
code,	we	construct	the	unique	composite	key	of	the	trade	agreement	we	want	to
retrieve.	In	line	22,	we	retrieve	the	value	with	the	function	GetState.	In	line	33,	we
deserialize	the	array	of	bytes	into	the	instance	of	the	TradeAgreement	struct.	In	line
41,	we	modify	the	status	so	it	reads	ACCEPTED;	finally,	in	line	47,	we	store	the
updated	value	on	the	ledger,	as	follows:

func	(t	*TradeWorkflowChaincode)	acceptTrade(stub	shim.ChaincodeStubInterface,	

creatorOrg	string,	creatorCertIssuer	string,	args	[]string)	pb.Response	{	

			var	tradeKey	string	

			var	tradeAgreement	*TradeAgreement	

			var	tradeAgreementBytes	[]byte	

			var	err	error	

	

			//	Access	control:	Only	an	Exporting	Entity	Org	member	can	invoke	this	transaction	

			if	!t.testMode	&&	!authenticateExportingEntityOrg(creatorOrg,	creatorCertIssuer)	{	

									return	shim.Error("Caller	not	a	member	of	Exporting	Entity	Org.	Access	

denied.")	

			}	

	

			if	len(args)	!=	1	{	

									err	=	errors.New(fmt.Sprintf("Incorrect	number	of	arguments.	Expecting	1:	

{ID}.	Found	%d",	len(args)))	

									return	shim.Error(err.Error())	

			}	

	

			//	Get	the	state	from	the	ledger	

			tradeKey,	err	=	getTradeKey(stub,	args[0])	

			if	err	!=	nil	{	

									return	shim.Error(err.Error())	

			}	

			tradeAgreementBytes,	err	=	stub.GetState(tradeKey)	

			if	err	!=	nil	{	

									return	shim.Error(err.Error())	

			}	

	

			if	len(tradeAgreementBytes)	==	0	{	

									err	=	errors.New(fmt.Sprintf("No	record	found	for	trade	ID	%s",	args[0]))	

									return	shim.Error(err.Error())	

			}	

	

			//	Unmarshal	the	JSON	

			err	=	json.Unmarshal(tradeAgreementBytes,	&tradeAgreement)	

			if	err	!=	nil	{	

									return	shim.Error(err.Error())	

			}	

	

			if	tradeAgreement.Status	==	ACCEPTED	{	

									fmt.Printf("Trade	%s	already	accepted",	args[0])	

			}	else	{	

									tradeAgreement.Status	=	ACCEPTED	

									tradeAgreementBytes,	err	=	json.Marshal(tradeAgreement)	

									if	err	!=	nil	{	

															return	shim.Error("Error	marshaling	trade	agreement	structure")	

									}	

									//	Write	the	state	to	the	ledger	

									err	=	stub.PutState(tradeKey,	tradeAgreementBytes)	

									if	err	!=	nil	{	

															return	shim.Error(err.Error())	

									}	

			}	

			fmt.Printf("Trade	%s	acceptance	recordedn",	args[0])	

	

			return	shim.Success(nil)	

}		

Main	function
Last	but	not	least,	we	will	add	the	main	function:	the	initial	point	of	a	Go
program.	When	an	instance	of	the	chaincode	is	deployed	on	a	peer,	the	main
function	is	executed	to	start	the	chaincode.

In	line	2	of	the	following	snippet,	the	chaincode	is	instantiated.	The	function
shim.Start	starts	the	chaincode	in	line	4	and	registers	it	with	the	peer,	as	follows:

func	main()	{	

			twc	:=	new(TradeWorkflowChaincode)	

			twc.testMode	=	false	

			err	:=	shim.Start(twc)	

			if	err	!=	nil	{	

									fmt.Printf("Error	starting	Trade	Workflow	chaincode:	%s",	err)	

			}	

}	

Testing	chaincode
Now	we	can	write	unit	tests	for	our	chaincode	functions,	we	will	use	the	in-built
automated	Go	testing	framework.	For	more	information	and	documentation,	visit
Go's	official	website	at:	https://golang.org/pkg/testing/

The	framework	automatically	seeks	and	executes	functions	with	the	following
signature:

	func	TestFname(*testing.T)

The	function	name	Fname	is	an	arbitrary	name	that	must	start	with	an	uppercase
letter.

Note	that	the	test	suite	file	containing	unit	tests	must	end	with	the	suffix,	_test.go;
therefore,	our	test	suite	file	will	be	named	tradeWorkflow_test.go	and	placed	in	the
same	directory	as	our	chaincode	file.	The	first	argument	of	the	test	function	is	of
the	type	T,	which	provides	functions	for	managing	test	states	and	supporting
formatted	test	logs.	The	output	of	the	test	is	written	into	the	standard	output,	it
can	be	inspected	in	the	terminal.

https://golang.org/pkg/testing/

SHIM	mocking
The	SHIM	package	provides	a	comprehensive	mocking	model	that	can	be	used
to	test	chaincodes.	In	our	unit	tests,	we	will	use	the	MockStub	type,	which	provides
an	implementation	of	ChaincodeStubInterface	for	unit-testing	chaincodes.

Testing	the	Init	method
First,	we	need	to	define	the	function	needed	to	invoke	the	Init	method.	The
function	will	receive	references	to	MockStub,	as	well	as	to	an	array	of	arguments	to
pass	to	the	Init	method.	In	line	2	of	the	following	code,	the	chaincode	function
Init	is	invoked	with	the	received	arguments,	which	is	then	verified	in	line	3.

The	following	snippet	illustrates	the	invocation	of	the	Init	method:

	func	checkInit(t	*testing.T,	stub	*shim.MockStub,	args	[][]byte)	{	

			res	:=	stub.MockInit("1",	args)	

			if	res.Status	!=	shim.OK	{	

									fmt.Println("Init	failed",	string(res.Message))	

									t.FailNow()	

			}	

}	

We	will	now	define	the	function	needed	to	prepare	a	default	array	of	values	of
the	Init	function	arguments,	shown	as	follows:

func	getInitArguments()	[][]byte	{	

			return	[][]byte{[]byte("init"),	

															[]byte("LumberInc"),	

															[]byte("LumberBank"),	

															[]byte("100000"),	

															[]byte("WoodenToys"),	

															[]byte("ToyBank"),	

															[]byte("200000"),	

															[]byte("UniversalFreight"),	

															[]byte("ForestryDepartment")}	

}	

We	will	now	define	the	test	of	the	Init	function,	as	shown	in	the	following
snippet.	The	test	first	creates	an	instance	of	the	chaincode,	then	sets	the	mode	to
test,	and	finally	creates	a	new	MockStub	for	the	chaincode.	In	line	7,	the	checkInit
function	is	invoked	and	the	Init	function	is	executed.	Finally,	from	line	9
onwards,	we	will	verify	the	state	of	the	ledger,	as	follows:

func	TestTradeWorkflow_Init(t	*testing.T)	{	

			scc	:=	new(TradeWorkflowChaincode)	

			scc.testMode	=	true	

			stub	:=	shim.NewMockStub("Trade	Workflow",	scc)	

	

			//	Init	

			checkInit(t,	stub,	getInitArguments())	

	

			checkState(t,	stub,	"Exporter",	EXPORTER)	

			checkState(t,	stub,	"ExportersBank",	EXPBANK)	

			checkState(t,	stub,	"ExportersAccountBalance",	strconv.Itoa(EXPBALANCE))	

			checkState(t,	stub,	"Importer",	IMPORTER)	

			checkState(t,	stub,	"ImportersBank",	IMPBANK)	

			checkState(t,	stub,	"ImportersAccountBalance",	strconv.Itoa(IMPBALANCE))	

			checkState(t,	stub,	"Carrier",	CARRIER)	

			checkState(t,	stub,	"RegulatoryAuthority",	REGAUTH)	

}

Next,	we	verify	whether	each	key's	state	is	as	expected	with	the	checkState
function,	as	shown	in	the	following	codeblock:

func	checkState(t	*testing.T,	stub	*shim.MockStub,	name	string,	value	string)	{	

		bytes	:=	stub.State[name]	

		if	bytes	==	nil	{	

				fmt.Println("State",	name,	"failed	to	get	value")	

				t.FailNow()	

		}	

		if	string(bytes)	!=	value	{

				fmt.Println("State	value",	name,	"was",	string(bytes),	"and	not",	value,	"as	

expected")

				t.FailNow()

		}

}	

Testing	the	Invoke	method
It's	now	time	to	define	the	test	for	the	Invoke	function.	In	line	7	of	the	following
codeblock,	checkInit	is	called	to	initialize	the	ledger,	followed	by	checkInvoke	in
line	13,	which	invokes	the	requestTrade	function.	The	requestTrade	function	creates
a	new	trade	asset	and	stores	it	on	the	ledger.	To	verify	that	the	ledger	contains	the
correct	state,	a	new	TradeAgreement	is	created	and	serialized	in	lines	15	and	16,
before	a	new	composite	key	is	calculated	in	line	17.	Finally,	in	line	18,	the	state
of	the	key	is	verified	against	the	serialized	value.

Additionally,	as	previously	outlined,	our	chaincode	contains	a	series	of	functions
that	together	define	the	trade	workflow.	We	will	chain	the	invocations	of	these
functions	into	a	sequence	in	the	test	to	verify	the	whole	workflow.	The	code	of
the	whole	function	is	available	in	the	test	file	located	in	the	chaincode	folder.

func	TestTradeWorkflow_Agreement(t	*testing.T)	{	

			scc	:=	new(TradeWorkflowChaincode)	

			scc.testMode	=	true	

			stub	:=	shim.NewMockStub("Trade	Workflow",	scc)	

	

			//	Init	

			checkInit(t,	stub,	getInitArguments())	

	

			//	Invoke	'requestTrade'	

			tradeID	:=	"2ks89j9"	

			amount	:=	50000	

			descGoods	:=	"Wood	for	Toys"	

			checkInvoke(t,	stub,	[][]byte{[]byte("requestTrade"),	[]byte(tradeID),	

[]byte(strconv.Itoa(amount)),	[]byte(descGoods)})	

	

			tradeAgreement	:=	&TradeAgreement{amount,	descGoods,	REQUESTED,	0}	

			tradeAgreementBytes,	_	:=	json.Marshal(tradeAgreement)	

			tradeKey,	_	:=	stub.CreateCompositeKey("Trade",	[]string{tradeID})	

			checkState(t,	stub,	tradeKey,	string(tradeAgreementBytes))	

			...	

}

Following	snippet	shows	the	function	checkInvoke	.
func	checkInvoke(t	*testing.T,	stub	*shim.MockStub,	args	[][]byte)	{	

			res	:=	stub.MockInvoke("1",	args)	

			if	res.Status	!=	shim.OK	{	

									fmt.Println("Invoke",	args,	"failed",	string(res.Message))	

									t.FailNow()	

			}	

}

Running	tests
We	are	now	ready	to	run	our	tests!	The	go	test	command	will	execute	all	tests
found	in	the	tradeWorkflow_test.go	file.	The	file	contains	a	long	series	of	tests	that
verify	the	functions	defined	in	our	workflow.

Let's	now	run	the	tests	in	the	terminal	with	the	following	command:

$	cd	$GOPATH/src/trade-finance-logistics/chaincode/src/github.com/trade_workflow_v1	

$	go	test	

The	preceding	command	should	generate	the	following	output:

Initializing	Trade	Workflow	

Exporter:	LumberInc	

Exporter's	Bank:	LumberBank	

Exporter's	Account	Balance:	100000	

Importer:	WoodenToys	

Importer's	Bank:	ToyBank	

Importer's	Account	Balance:	200000	

Carrier:	UniversalFreight	

Regulatory	Authority:	ForestryDepartment	

...	

Amount	paid	thus	far	for	trade	2ks89j9	=	25000;	total	required	=	50000	

Payment	request	for	trade	2ks89j9	recorded	

TradeWorkflow	Invoke	

TradeWorkflow	Invoke	

Query	Response:{"Balance":"150000"}	

TradeWorkflow	Invoke	

Query	Response:{"Balance":"150000"}	

PASS	

ok							trade-finance-logistics/chaincode/src/github.com/trade_workflow_v1						0.036s		

Chaincode	design	topics

Composite	keys
We	often	need	to	store	multiple	instances	of	one	type	on	the	ledger,	such	as
multiple	trade	agreements,	letters	of	credit,	and	so	on.	In	this	case,	the	keys	of
those	instances	will	be	typically	constructed	from	a	combination	of	attributes—
for	example,	"Trade"	+	ID,	yielding	["Trade1","Trade2",	...].	The	key	of	an	instance
can	be	customized	in	the	code,	or	API	functions	can	be	provided	in	SHIM	to
construct	a	composite	key	(in	other	words,	a	unique	key)	of	an	instance	based	on
a	combination	of	several	attributes.	These	functions	simplify	composite	key
construction.	Composite	keys	can	then	be	used	as	a	normal	string	key	is	used	to
record	and	retrieve	values	using	the	PutState()	and	GetState()	functions.

The	following	snippet	shows	a	list	of	functions	that	create	and	work	with
composite	keys:

//	The	function	creates	a	key	by	combining	the	attributes	into	a	single	string.	

//	The	arguments	must	be	valid	utf8	strings	and	must	not	contain	U+0000	(nil	byte)	and	

U+10FFFF	charactres.	

func	CreateCompositeKey(objectType	string,	attributes	[]string)	(string,	error)	

	

//	The	function	splits	the	compositeKey	into	attributes	from	which	the	key	was	formed.	

//	This	function	is	useful	for	extracting	attributes	from	keys	returned	by	range	

queries.	

func	SplitCompositeKey(compositeKey	string)	(string,	[]string,	error)	

In	the	following	snippet	we	can	see	a	function	getTradeKey,	which	constructs	a
unique	composite	key	of	a	trade	agreement	by	combining	the	keyword	Trade	with
an	ID	of	the	trade:

func	getTradeKey(stub	shim.ChaincodeStubInterface,	tradeID	string)	(string,	error)	{	

			tradeKey,	err	:=	stub.CreateCompositeKey("Trade",	[]string{tradeID})	

			if	err	!=	nil	{	

									return	"",	err	

			}	else	{	

									return	tradeKey,	nil	

			}	

}

In	more	complex	scenarios,	keys	can	be	constructed	from	multiple	attributes.
Composite	keys	also	allow	you	to	search	for	assets	based	on	components	of	the
key	in	range	queries.	We	will	explore	searching	in	more	detail	in	the	upcoming
sections.

Range	queries
As	well	as	retrieving	assets	with	a	unique	key,	SHIM	offers	API	functions	the
opportunity	to	retrieve	sets	of	assets	based	on	a	range	criteria.	Moreover,
composite	keys	can	be	modeled	to	enable	queries	against	multiple	components
of	the	key.

The	range	functions	return	an	iterator	(StateQueryIteratorInterface)	over	a	set	of
keys	matching	the	query	criteria.	The	returned	keys	are	in	lexical	order.	The
iterator	must	be	closed	with	a	call	to	the	function	Close().	Additionally,	when	a
composite	key	has	multiple	attributes,	the	range	query
function,	GetStateByPartialCompositeKey(),	can	be	used	to	search	for	keys	matching	a
subset	of	the	attributes.	

For	example,	the	key	of	a	payment	composed	of	TradeId	and	PaymentId	can	be
searched	for	across	all	payments	associated	with	a	specific	TradeId,	as	shown	in
the	following	snippet:

	//	Returns	an	iterator	over	all	keys	between	the	startKey	(inclusive)	and	endKey	

(exclusive).	

//	To	query	from	start	or	end	of	the	range,	the	startKey	and	endKey	can	be	an	empty.	

func	GetStateByRange(startKey,	endKey	string)	(StateQueryIteratorInterface,	error)	

	

//	Returns	an	iterator	over	all	composite	keys	whose	prefix	matches	the	given	partial	

composite	key.	

//	Same	rules	as	for	arguments	of	CreateCompositeKey	function	apply.	

func	GetStateByPartialCompositeKey(objectType	string,	keys	[]string)	

(StateQueryIteratorInterface,	error)	

We	can	also	search	for	all	trade	agreements	with	an	ID	within	the	range	of	1-100
with	the	following	query:

startKey,	err	=	getTradeKey(stub,	"1")	

endKey,	err	=	getTradeKey(stub,	"100")	

	

keysIterator,	err	:=	stub.GetStateByRange(startKey,	endKey)	

if	err	!=	nil	{	

				return	shim.Error(fmt.Printf("Error	accessing	state:	%s",	err))	

}	

	

defer	keysIterator.Close()	

	

var	keys	[]string	

for	keysIterator.HasNext()	{	

				key,	_,	err	:=	keysIterator.Next()	

				if	err	!=	nil	{	

								return	shim.Error(fmt.Printf("keys	operation	failed.	Error	accessing	state:	

%s",	err))	

				}	

				keys	=	append(keys,	key)	

}

State	queries	and	CouchDB
By	default,	Fabric	uses	LevelDB	as	storage	for	the	Worldstate.	Fabric	also	offers
the	option	to	configure	peers	to	store	Worldstate	in	CouchDB.	When	assets	are
stored	in	the	form	of	JSON	documents,	CouchDB	allows	you	to	perform
complex	queries	for	assets	based	on	the	asset	state.

The	queries	are	formatted	in	the	native	CouchDB	declarative	JSON	querying
syntax.	The	current	version	of	this	syntax	is	available	at:
http://docs.couchdb.org/en/2.1.1/api/database/find.html.

Fabric	forwards	queries	to	CouchDB	and	returns	an	iterator
(StateQueryIteratorInterface()),	which	can	be	used	to	iterate	over	the	result	set.	The
declaration	of	the		state	based	query	function	is	as	follows:

func	GetQueryResult(query	string)	(StateQueryIteratorInterface,	error)

In	the	following	snippet,	we	can	see	a	state-based	query	for	all	trade	agreements
that	have	the	status	ACCEPTED	and	a	received	payment	of	over	1000.	The	query	is
then	executed	and	the	found	documents	are	written	to	the	terminal,	shown	as
follows:

//	CouchDB	query	definition

queryString	:=

`{

				"selector":	{

												"status":	"ACCEPTED"

												"payment":	{

																				"$gt":	1000

												}

				}

}`

fmt.Printf("queryString:\n%s\n",	queryString)

//	Invoke	query

resultsIterator,	err	:=	stub.GetQueryResult(queryString)

if	err	!=	nil	{

				return	nil,	err

}

defer	resultsIterator.Close()

var	buffer	bytes.Buffer

buffer.WriteString("[")

//	Iterate	through	all	returned	assets

bArrayMemberAlreadyWritten	:=	false

http://docs.couchdb.org/en/2.1.1/api/database/find.html

for	resultsIterator.HasNext()	{

				queryResponse,	err	:=	resultsIterator.Next()

				if	err	!=	nil	{

								return	nil,	err

				}

				if	bArrayMemberAlreadyWritten	==	true	{

								buffer.WriteString(",")

				}

				buffer.WriteString("{\"Key\":")

				buffer.WriteString("\"")

				buffer.WriteString(queryResponse.Key)

				buffer.WriteString("\"")

				buffer.WriteString(",	\"Record\":")

				buffer.WriteString(string(queryResponse.Value))

				buffer.WriteString("}")

				bArrayMemberAlreadyWritten	=	true

}

buffer.WriteString("]")

fmt.Printf("queryResult:\n%s\n",	buffer.String())

Note	that	unlike	queries	over	keys,	the	queries	over	state	are	not	recorded	into
the	ReadSet	of	the	transaction.	Thus,	the	validation	of	the	transaction	cannot
actually	verify	whether	changes	to	the	Worldstate	occurred	between	the
execution	and	commitment	of	the	transaction.	The	chaincode	design	must
therefore	take	that	into	consideration;	if	a	query	is	based	on	an	expected
invocation	sequence,	an	invalid	transaction	may	appear.

Indexes
Performing	queries	on	large	datasets	is	a	computationally	complex	task.	Fabric
provides	a	mechanism	for	defining	indexes	on	the	CouchDB	hosted	Worldstate
to	increase	efficiency.	Note	that	indexes	are	also	required	for	sorting	operations
in	queries.

An	index	is	defined	in	JSON	in	a	separate	file	with	the	extension	*.json.	The	full
definition	of	the	format	is	available	at:	http://docs.couchdb.org/en/2.1.1/api/database/
find.html#db-index.

The	following	snippet	illustrates	an	index	that	matches	our	query	for	the	trade
agreements	we	looked	at	earlier:

	{	

		"index":	{	

				"fields":	[

						"status",	

						"payment"	

]	

		},	

		"name":	"index_sp",	

		"type":	"json"	

}		

Here,	the	index	files	are	placed	into	the	folder	/META-INF/statedb/couchdb/indexes.
During	compilation,	the	indexes	are	packaged	along	with	the	chaincode.	Upon
installation	and	instantiation	of	the	chaincode	on	the	peer,	the	indexes	are
automatically	deployed	onto	the	Worldstate	and	used	by	queries.

http://docs.couchdb.org/en/2.1.1/api/database/find.html#db-index
http://docs.couchdb.org/en/2.1.1/api/database/find.html#db-index

ReadSet	and	WriteSet
On	receipt	of	a	transaction	invocation	message	from	a	client,	the	endorsing	peer
executes	a	transaction.	The	execution	invokes	the	chaincode	in	the	context	of	the
peer's	Worldstate	and	records	all	reads	and	writes	of	its	data	on	the	ledger	into	a
ReadSet	and	WriteSet.

The	transaction's	WriteSet	contains	a	list	of	key	and	value	pairs	that	were
modified	during	the	execution	by	the	chaincode.	When	the	value	of	a	key	is
modified	(that	is,	a	new	key	and	value	are	recorded	or	an	existing	key	is	updated
with	a	new	value),	the	WriteSet	will	contain	the	updated	key	and	value	pair.

When	a	key	is	deleted,	the	WriteSet	will	contain	the	key	with	an	attribute	marking
the	key	as	deleted.	If	a	single	key	is	modified	multiple	times	during	chaincode
execution,	the	WriteSet	will	contain	the	latest	modified	value.

The	transaction's	ReadSet	contains	a	list	of	keys	and	their	versions	that	were
accessed	during	execution	by	the	chaincode.	The	version	number	of	a	key	is
derived	from	a	combination	of	the	block	number	and	the	transaction	number
within	the	block.	This	design	enables	the	efficient	searching	and	processing	of
data.	Another	section	of	the	transaction	contains	information	about	range	queries
and	their	outcome.	Remember	that	when	a	chaincode	reads	the	value	of	a	key,
the	latest	committed	value	in	the	ledger	is	returned.

If	modifications	introduced	during	chaincode	execution	are	stored	in	the	WriteSet,
when	a	chaincode	is	reading	a	key	modified	during	execution,	the	committed—
not	modified—value	will	be	returned.	Therefore,	if	a	modified	value	is	needed
later	during	the	same	execution,	the	chaincode	must	be	implemented	such	that	it
retains	and	uses	the	correct	values.

An	example	of	a	transaction's	ReadSet	and	WriteSet	is	as	follows:

{

		"rwset":	{

				"reads":	[

						{

								"key":	"key1",

								"version":	{

										"block_num":	{

												"low":	9546,

												"high":	0,

												"unsigned":	true

										},

										"tx_num":	{

												"low":	0,

												"high":	0,

												"unsigned":	true

										}

								}

						}

],

				"range_queries_info":	[],

				"writes":	[

						{

								"key":	"key1",

								"is_delete":	false,

								"value":	"value1"

						},

						{

								"key":	"key2",

								"is_delete":	true

						}

]

		}

}

Multiversion	concurrency	control
Fabric	uses	a	multiversion	concurrency	control	(MVCC)	mechanism	to	ensure
consistency	in	the	ledger	and	to	prevent	double	spending.	Double	spending
attacks	aim	to	exploit	flaws	in	systems	by	introducing	transactions	that	use	or
modify	the	same	resource	multiple	times,	such	as	spending	the	same	coin
multiple	times	in	a	cryptocurrency	network.	A	key	collision	is	another	type	of
problems	that	can	occur	while	processing	transactions	submitted	by	parallel
clients,	and	which	may	attempt	to	modify	the	same	key/value	pairs	at	the	same
time.

In	addition,	due	to	Fabric's	decentralized	architecture,	the	sequence	of
transaction	execution	can	be	ordered	and	committed	differently	on	the	different
Fabric	components	(including	endorsers,	orderers,	and	committers),	which	in
turn	introduces	a	delay	between	the	calculation	and	commitment	of	the
transaction,	within	which	key	collision	can	occur.	Decentralization	also	leaves
the	network	vulnerable	to	potential	problems	and	attacks	by	intentionally	or
unintentionally	modifying	the	sequence	of	transactions	by	clients.

To	ensure	consistency,	computer	systems	such	as	databases	typically	use	a
locking	mechanism.	However,	locking	requires	a	centralized	approach,	which	is
unavailable	in	Fabric.	It's	also	worth	noting	that	locking	can	sometimes
introduce	a	performance	penalty.

To	combat	this,	Fabric	uses	a	versioning	system	of	keys	stored	on	the	ledger.	The
aim	of	the	versioning	system	is	to	ensure	that	transactions	are	ordered	and
committed	into	the	ledger	in	a	sequence	that	does	not	introduce	inconsistencies.
When	a	block	is	received	on	a	committing	peer,	each	transaction	of	the	block	is
validated.	The	algorithm	inspects	the	ReadSet	for	keys	and	their	versions;	if	the
version	of	each	key	in	the	ReadSet	matches	the	version	of	the	same	key	in	the
Worldstate,	or	of	the	preceding	transactions	in	the	same	block,	the	transaction	is
considered	valid.	In	other	words,	the	algorithm	verifies	that	none	of	the	data	read
from	the	Worldstate	during	transaction	execution	has	been	changed.

If	a	transaction	contains	range	queries,	these	will	be	validated	as	well.	For	each

range	query,	the	algorithm	checks	whether	the	result	of	executing	the	query	is
exactly	the	same	as	it	was	during	chaincode	execution,	or	if	any	modification	has
taken	place.

Transactions	that	do	not	pass	this	validation	are	marked	as	invalid	in	the	ledger
and	the	changes	they	introduce	are	not	projected	onto	the	Worldstate.	Note	that
since	the	ledger	is	immutable,	the	transactions	stay	on	the	ledger.

If	a	transaction	passes	the	validation,	the	WriteSet	is	projected	onto	the
Worldstate.	Each	key	modified	by	the	transaction	is	set	in	the	Worldstate	to	the
new	value	specified	in	the	WriteSet,	and	the	version	of	the	key	in	the	Worldstate	is
set	to	a	version	derived	from	the	transaction.	In	this	way,	any	inconsistencies
such	as	double	spending	are	prevented.	At	the	same	time,	in	situations	when	key
collisions	may	occur,	the	chaincode	design	must	take	the	behavior	of	MVCC
into	consideration.	There	are	multiple	well-known	strategies	for	addressing	key
collisions	and	MVCC,	such	as	splitting	assets,	using	multiple	keys,	transaction
queuing,	and	more.

Logging	output
Logging	is	a	vital	part	of	system	code,	enabling	the	analysis	and	detection	of
runtime	problems.

Logging	in	Fabric	is	based	on	the	standard	Go	logging	package,	github.com/op/go-
logging.	The	logging	mechanism	provides	severity-based	control	of	logs	and
pretty-printing	decoration	of	messages.	The	logging	levels	are	defined	in
decreasing	order	of	severity,	as	follows:

CRITICAL	|	ERROR	|	WARNING	|	NOTICE	|	INFO	|	DEBUG	

The	log	messages	are	combined	from	all	components	and	written	into	the
standard	error	file	(stderr).	Logging	can	be	controlled	by	the	configuration	of
peers	and	modules,	as	well	as	in	the	code	of	the	chaincode.

Configuration
The	default	configuration	of	peer	logging	is	set	to	the	level	INFO,	but	this	level
can	be	controlled	in	the	following	ways:

1.	 A	command	line	option	logging	level.	This	option	overrides	default
configurations,	shown	as	follows:

peer	node	start	--logging-level=error		

Note	that	any	module	or	chaincode	can	be	configured	through	the
command	line	option,	as	shown	in	the	following	snippet:

	peer	node	start	--logging-level=chaincode=error:main=info

2.	 The	default	logging	level	can	also	be	defined	with	an	environment	variable
CORE_LOGGING_LEVEL,	as	shown	in	the	following	snippet:

peer0.org1.example.com:

				environment:

								-	CORE_LOGGING_LEVEL=error

3.	 A	configuration	attribute	in	the	core.yml	file,	defining	the	configuration	of	a
network	can	also	be	used	with	the	following	code:

logging:

				level:	info

4.	 The	core.yml	file	also	allows	you	to	configure	logging	levels	for	specific
modules,	such	as	for	the	chaincode	or	the	format	of	messages,	as	shown	in	the
following	snippet:

	chaincode:	

			logging:	

									level:		error	

									shim:			warning		

More	detail	on	the	various	configuration	options	are	provided	in	the	comments
of	the	core.yml	file.

Logging	API
The	SHIM	package	provides	APIs	for	the	chaincode	to	create	and	manage
logging	objects.	The	logs	generated	by	these	objects	are	integrated	with	peer
logs.

The	chaincode	can	create	and	use	an	arbitrary	number	of	logging	objects.	Each
logging	object	must	have	a	unique	name,	which	is	used	to	prefix	log	records	in
the	output	and	to	distinguish	the	records	of	different	logging	objects	and	the
SHIM.	(Remember	that	the	logging	object	name	SHIM	API	is	reserved	and
should	not	be	used	in	chaincode.)	Each	logging	object	has	set	a	logging	severity
level	at	which	the	log	records	will	be	sent	to	the	output.	Log	records	with	the
severity	level	CRITICAL	always	appear	in	the	output.	The	following	snippet	lists	the
API	functions	to	create	and	manage	logging	objects	in	the	chaincode.

//	Creates	a	new	logging	object.	

func	NewLogger(name	string)	*ChaincodeLogger	

	

//	Converts	a	case-insensitive	string	representing	a	logging	level	into	an	element	of	

LoggingLevel	enumeration	type.	

//	This	function	is	used	to	convert	constants	of	standard	GO	logging	levels	(i.e.	

CRITICAL,	ERROR,	WARNING,	NOTICE,	INFO	or	DEBUG)	into	the	shim's	enumeration	

LoggingLevel	type	(i.e.	LogDebug,	LogInfo,	LogNotice,	LogWarning,	LogError,	

LogCritical).	

func	LogLevel(levelString	string)	(LoggingLevel,	error)	

	

//	Sets	the	logging	level	of	the	logging	object.	

func	(c	*ChaincodeLogger)	SetLevel(level	LoggingLevel)	

	

//	Returns	true	if	the	logging	object	will	generate	logs	at	the	given	level.	

func	(c	*ChaincodeLogger)	IsEnabledFor(level	LoggingLevel)	bool	

The	logging	object	ChaincodeLogger	provides	functions	for	logging	records	for	each
of	the	severity	levels.	The	following	shippet	lists	the	functions	of	the
ChaincodeLogger.

func	(c	*ChaincodeLogger)	Debug(args	...interface{})	

func	(c	*ChaincodeLogger)	Debugf(format	string,	args	...interface{})	

func	(c	*ChaincodeLogger)	Info(args	...interface{})	

func	(c	*ChaincodeLogger)	Infof(format	string,	args	...interface{})	

func	(c	*ChaincodeLogger)	Notice(args	...interface{})	

func	(c	*ChaincodeLogger)	Noticef(format	string,	args	...interface{})	

func	(c	*ChaincodeLogger)	Warning(args	...interface{})	

func	(c	*ChaincodeLogger)	Warningf(format	string,	args	...interface{})	

func	(c	*ChaincodeLogger)	Error(args	...interface{})	

func	(c	*ChaincodeLogger)	Errorf(format	string,	args	...interface{})	

func	(c	*ChaincodeLogger)	Critical(args	...interface{})	

func	(c	*ChaincodeLogger)	Criticalf(format	string,	args	...interface{})	

The	default	formatting	of	the	records	is	defined	by	the	configuration	of	SHIM,
which	places	a	space	between	the	printed	representations	of	the	input	arguments.
For	each	severity	level,	the	logging	objects	provide	an	additional	function	with
the	suffix	f.	These	functions	allow	you	to	control	the	formatting	of	the	output
with	the	argument	format.

The	template	of	an	output	generated	by	the	logging	objects	is	as	follows:

[timestamp]	[logger	name]	[severity	level]	printed	arguments	

The	output	of	all	logging	objects	and	of	SHIM	is	combined	and	sent	into	the
standard	error	(stderr).

The	following	code	block	illustrates	an	example	of	creating	and	using	a	logging
object:

var	logger	=	shim.NewLogger("tradeWorkflow")	

logger.SetLevel(shim.LogDebug)	

	

_,	args	:=	stub.GetFunctionAndParameters()	

logger.Debugf("Function:	%s(%s)",	"requestTrade",	strings.Join(args,	","))	

	

if	!authenticateImporterOrg(creatorOrg,	creatorCertIssuer)	{	

			logger.Info("Caller	not	a	member	of	Importer	Org.	Access	denied:",	creatorOrg,	

creatorCertIssuer)	

}	

SHIM	logging	levels
The	chaincode	can	also	directly	control	the	logging	severity	level	of	its	SHIM	by
using	the	API	function	SetLoggingLevel	as	follows:

logLevel,	_	:=	shim.LogLevel(os.Getenv("TW_SHIM_LOGGING_LEVEL"))

shim.SetLoggingLevel(logLevel)

Stdout	and	stderr
As	well	as	the	logging	mechanisms	provided	by	the	SHIM	API	and	integrated
with	the	peer,	during	the	development	phase,	the	chaincode	can	use	the	standard
output	files.	The	chaincode	is	executed	as	an	independent	process	and	can
therefore	use	the	standard	output	(stdout)	and	standard	error	(stderr)	files	to
record	output	using	standard	Go	printing	functions	(for	example,	fmt.Printf(...)
and	os.Stdout).	By	default,	the	standard	outputs	are	available	in	Dev	mode,	when
the	chaincode	process	is	started	independently.

In	a	production	environment	when	the	chaincode	process	is	managed	by	the
peer,	the	standard	output	is	disabled	for	security	reasons.	When	required,	it	can
be	enabled	by	setting	the	configuration	variable	CORE_VM_DOCKER_ATTACHSTDOUT	of	the
peer.	The	outputs	of	the	chaincode	are	then	combined	with	the	outputs	of	the
peer.	Keep	in	mind	that	these	outputs	should	only	be	used	for	debugging
purposes	and	should	not	be	enabled	in	a	production	environment.

The	following	snippet	illustrates	additional	SHIM	API	functions:

peer0.org1.example.com:	

			environment:	

									-	CORE_VM_DOCKER_ATTACHSTDOUT=true	

Listing	4.1:	Enabling	chaincode	standard	output	files	on	a	peer	in	docker-compose	file.

Additional	SHIM	API	functions
In	this	section,	we	provide	an	overview	of	the	remaining	API	functions	of	shim
available	to	chaincode.

	//	Returns	an	unique	Id	of	the	transaction	proposal.	

func	GetTxID()	string	

	

//	Returns	an	Id	of	the	channel	the	transaction	proposal	was	sent	to.	

func	GetChannelID()	string	

	

//	Calls	an	Invoke	function	on	a	specified	chaincode,	in	the	context	of	the	current	

transaction.	

//	If	the	invoked	chaincode	is	on	the	same	channel,	the	ReadSet	and	WriteSet	will	be	

added	into	the	same	transaction.	

//	If	the	invoked	chaincode	is	on	a	different	channel,	the	invocation	can	be	used	only	

as	a	query.	

func	InvokeChaincode(chaincodeName	string,	args	[][]byte,	channel	string)	pb.Response	

	

//	Returns	a	list	of	historical	states,	timestamps	and	transactions	ids.	

func	GetHistoryForKey(key	string)	(HistoryQueryIteratorInterface,	error)	

	

//	Returns	the	identity	of	the	user	submitting	the	transaction	proposal.	

func	GetCreator()	([]byte,	error)	

	

//	Returns	a	map	of	fields	containing	cryptographic	material	which	may	be	used	to	

implement	custom	privacy	layer	in	the	chaincode.	

func	GetTransient()	(map[string][]byte,	error)	

	

//	Returns	data	which	can	be	used	to	enforce	a	link	between	application	data	and	the	

transaction	proposal.	

func	GetBinding()	([]byte,	error)	

	

//	Returns	data	produced	by	peer	decorators	which	modified	the	chaincode	input.	

func	GetDecorations()	map[string][]byte	

	

//	Returns	data	elements	of	a	transaction	proposal.	

func	GetSignedProposal()	(*pb.SignedProposal,	error)	

	

//	Returns	a	timestamp	of	the	transaction	creation	by	the	client.	The	timestamp	is	

consistent	across	all	endorsers.	

func	GetTxTimestamp()	(*timestamp.Timestamp,	error)	

	

//	Sets	an	event	attached	to	the	transaction	proposal	response.	This	event	will	be	be	

included	in	the	block	and	ledger.	

func	SetEvent(name	string,	payload	[]byte)	error		

Summary
Design	and	implementation	a	well-functioning	chaincode	is	a	complex	software
engineering	task	which	requires	both	the	knowledge	of	the	Fabric	architecture,
API	functions	and	of	GO	language	as	well	as	the	correct	implementation	of	the
business	requirements.

In	this	chapter,	we	have	learned	step-by-step	how	to	start	a	blockchain	network
in	dev	mode	suitable	for	implementation	and	testing	of	the	chaincode	and	how	to
use	CLI	to	deploy	and	invoke	chaincode.	We	have	then	learned	how	to
implement	the	chaincode	of	our	scenario.	We	explored	the	Init	and	Invoke
functions	through	which	Chaincode	receives	requests	from	clients,	explored
access	control	mechanism	and	the	various	APIs	available	to	developer	to
implement	chaincode	functionality.

Finally,	we	learned	how	to	test	chaincode	and	how	to	integrate	logging
functionality	into	the	code.	To	get	ready	for	the	next	chapter,	you	should	now
stop	your	network	using	./trade.sh	down	-d	true.

Exposing	Network	Assets	and
Transactions
If	you	have	reached	this	far,	congratulations!	You	have	built	the	core	of	your
blockchain	application	and	the	smart	contract	that	directly	reads,	and	more
importantly,	manipulates,	the	ledger	that	is	the	System-of-Record	for	your
network.	But,	you	are	not	close	to	finishing	yet.	As	you	can	imagine,	the	contract
is	a	sensitive	piece	of	code	that	must	be	protected	from	misuse	or	tampering.

To	produce	a	robust	and	secure	application	that	is	safe	to	release	to	business
users,	you	must	wrap	the	smart	contract	with	one	or	more	layers	of	protection
and	engineer	it	as	a	service	that	clients	can	access	remotely	through	appropriate
safeguards.	In	addition,	the	various	stakeholders	that	wish	to	share	a	ledger	and	a
smart	contract	may	have	unique	and	specific	business	logic	needs	that	only	they,
and	not	the	others,	need	to	implement	over	and	above	the	contract.	For	this
reason,	one	blockchain	application	running	one	smart	contract	may	end	up
offering	different	views	and	capabilities	to	different	stakeholders.

In	this	chapter,	you	will	first	learn	how	to	build	a	complete	blockchain
application	from	the	ground	up	using	our	trade	application	as	a	guide	and
example.	Later,	you	will	learn	about	the	various	considerations	that	go	into
designing	this	application	for	a	scenario	of	your	choice	and	how	to	integrate	that
application	with	existing	systems	and	processes.

The	topics	that	will	be	covered	in	this	chapter	are	as	follows:

Building	a	complete	application
Integrating	the	application	with	existing	systems	and	processes

Building	a	complete	application
In	this	section,	you	will	learn	how	to	build	a	complete	application	around	the
core	smart	contract	that	can	be	readily	used	by	the	business	entities	that	have
joined	together	to	form	a	network.	We	will	begin	with	a	recap	of	the	Hyperledger
Fabric	transaction	pipeline	to	remind	the	reader	what	(and	how)	a	blockchain
application	does	from	the	perspective	of	the	user	(or	client).	Using	code	samples,
we	will	show	you	how	to	build,	design,	and	organize	a	network	around	the	needs
of	business	entities,	create	appropriate	configurations,	and	effect	the	different
stages	of	a	blockchain	transaction	from	start	to	finish.	At	the	end	of	this	process,
the	reader	will	understand	how	to	engineer	a	Fabric	application	and	expose	its
capabilities	through	a	simple	web	interface.	The	only	asset	we	need	to	possess	in
the	beginning	of	this	chapter	is	the	contract,	or	chaincode,	which	was	developed
using	either	hands-on	Go	programming	(see	Chapter	4,	Designing	a	data	and
transaction	model	with	Golang).

In	the	back-end	of	this	chapter,	we	will	guide	the	experienced	enterprise
developer	through	more	advanced	topics,	such	as	service	design	patterns,
reliability,	and	other	common	engineering	concerns.	Although	these	concerns
apply	to	every	distributed	application,	we	will	discuss	the	special	needs	and
issues	of	blockchain-based	applications.

The	nature	of	a	Hyperledger	Fabric
application
In	earlier	chapters,	we	saw	how	Hyperledger	Fabric	can	be	viewed	as	a
distributed	transaction	processing	system,	with	a	staged	pipeline	of	operations
that	may	eventually	result	in	a	change	to	the	state	of	the	shared	replicated	ledger
maintained	by	the	network	peers.	To	the	developer,	a	blockchain	application	is	a
collection	of	processes	through	which	a	user	may	submit	transactions	to,	or	read
state	from,	a	smart	contract.	Under	the	cover,	the	developer	must	channel	a	user
request	into	the	different	stages	of	the	transaction	pipeline	and	extract	results	to
provide	feedback	at	the	end	of	the	process.	Essentially,	it	is	the	application
developer's	job	to	implement	one	or	more	layers	of	wrappers	around	the	smart
contract,	regardless	of	whether	the	contract	was	implemented	by	hand	(see	Chapte
r	4,	Designing	a	data	and	transaction	model	with	Golang)	or	using	Hyperledger
Composer	(see		Chapter	6,	Business	Networks).

An	application	developed	with	the	smart	contract	(or	the	asset-entity	model)	at
its	core	can	be	viewed	as	a	transaction-processing	database	application	with	a	set
of	views	or	a	service	API.	However,	the	developer	must	keep	in	mind	that	every
Hyperledger	Fabric	transaction	is	asynchronous,	that	is,	the	result	of	the
transaction	will	not	be	available	in	the	same	communication	session	that	it	was
submitted	in.	This	is	because,	as	we	have	seen	in	previous	chapters,	a	transaction
must	be	collectively	approved	by	the	peers	in	the	network	through	consensus.	As
such,	consensus	may	potentially	take	an	unbounded	amount	of	time,	and	the
communication	of	a	transaction	result	is	designed	as	a	publish/subscribe
mechanism.	The	following	diagram	illustrates	the	blockchain	application	and
transaction	pipeline	from	the	perspective	of	the	developer:

Figure	5.1:	The	stages	in	the	creation	and	operation	of	a	blockchain	application

In	the	next	section,	the	operations	mentioned	in	this	diagram	will	be	described	in
more	detail	and	mapped	to	specific	Fabric	mechanisms.

Application	and	transaction	stages
The	first	step	in	the	creation	of	an	application	is	the	instantiation	of	the
blockchain,	or	the	shared	ledger	itself.	In	Fabric	parlance,	an	instance	of	a
blockchain	is	referred	to	as	a	channel,	and	therefore	the	first	step	in	a	blockchain
application	is	the	creation	of	a	channel	and	the	bootstrapping	of	the	network
ordering	service	with	the	channel's	genesis	block.

The	next	step	is	the	initialization	of	the	peer	network,	whereby	all	the	peer	nodes
selected	to	run	the	application	must	be	joined	to	the	channel,	a	process	that
allows	each	peer	to	maintain	a	copy	of	the	ledger,	which	is	initialized	to	a	blank
key-value	store.	Every	peer	that's	joined	to	the	channel	will	possess	ledger
commitment	privileges	and	may	participate	in	a	gossip	protocol	in	order	to	sync
ledger	state	with	each	other.

After	the	creation	of	the	peer	network	comes	the	installation	of	the	smart
contract	on	that	network.	A	subset	of	the	peers	joined	to	the	channel	preceding	it
will	be	selected	to	run	the	smart	contract;	in	other	words,	they	will	possess
endorsement	privileges.	The	contract	code	will	be	deployed	to	these	peers	and
built	for	subsequent	operation.	As	you	know,	by	this	point,	the	contract	is
referred	to	as	chaincode	in	Fabric	parlance,	and	that	is	the	term	that	will	be	used
for	the	rest	of	this	chapter.

Once	the	chaincode	has	been	installed	on	the	endorsing	peers,	it	will	be
initialized	as	per	the	logic	that	has	been	embedded	in	it	(see	Chapter	4,	Designing
a	Data	and	Transaction	Model	with	Golang,	for	examples).

At	this	point,	unless	something	has	gone	wrong	in	one	or	more	of	the	preceding
steps,	the	application	is	up	and	running.	Now,	transactions	may	be	sent	to	the
chaincode	to	either	update	the	state	of	the	ledger	(invocations)	or	to	read	the
ledger	state	(queries)	for	the	lifetime	of	the	application.

The	application	may	change	or	evolve	over	time,	requiring	special	operations	to	be	carried
out	that	are	not	captured	in	Figure	5.1:	The	stages	in	the	creation	and	operation	of	a
blockchain	application.	Those	will	be	described	in	Chapter	9:	Life	In	A	Blockchain	Network.

In	the	section	titled	"Building	the	Application"	and	onward,	we	will	show	how	a	trade

application	can	be	built	around	the	chaincodes	developed	in	Chapter	4,	Designing
a	Data	and	Transaction	Model	with	Golang,	using	suitable	code	and
instructions.

Application	model	and	architecture
The	process	of	writing	a	Fabric	application	begins	with	chaincode,	but	ultimately
the	developer	must	make	judicious	decisions	about	how	an	end	user	or	a
software	agent	must	interface	with	that	chaincode.	How	the	assets	of	the
chaincode,	and	the	operations	of	the	blockchain	network	running	that	chaincode,
ought	to	be	exposed	to	the	user	is	a	question	that	ought	to	be	dealt	with	carefully.
Significant	damage	is	possible	if	these	capabilities	are	exposed	without
restriction,	especially	the	ones	involving	blockchain	bootstrapping	and
configurations.	Proper	operation	of	the	chaincode	itself	relies	not	just	on	its
internal	logic,	but	suitable	access	controls	being	built	above	it.	As	we	saw	in	the
previous	section,	setting	up	an	application	and	preparing	it	for	use	is	a	complex
process.	In	addition,	the	asynchronous	nature	of	ledger-update	transactions
requires	an	arbitration	layer	between	the	chaincode	and	the	user.	To	allow	the
user	to	focus	on	transactions	that	impact	the	application	rather	than	the	details	of
the	network	modules,	all	this	complexity	ought	to	be	hidden	as	much	as	possible.
It	is	for	this	reason	that	a	three-layer	architecture	has	evolved	as	the	standard	for
a	Fabric	application,	as	illustrated	in	the	following	diagram:

Figure	5.2	Typical	three-layer	architecture	of	a	Hyperledger	Fabric	application

At	the	lowest	layer	lies	the	smart	contract	that	operates	directly	on	the	shared

ledger,	which	may	be	written	using	one	or	more	chaincode	units.	These
chaincodes	run	on	the	network	peers,	exposing	a	service	API	for	invocations	and
queries,	and	publishing	event	notifications	of	transaction	results,	as	well	as
configuration	changes	occurring	on	the	channel.

In	the	middle	layer	lies	the	functions	to	orchestrate	the	various	stages	of	a
blockchain	application	(see	Figure	5.1:	The	stages	in	the	creation	and	operation
of	a	blockchain	application).	Hyperledger	Fabric	provides	an	SDK	(currently
available	in	Node.js	as	well	as	in	Java)	to	perform	functions	such	as	channel
creation	and	joining,	registration,	and	enrollment	of	users,	as	well	as	chaincode
operations.	In	addition,	the	SDK	offers	mechanisms	to	subscribe	to	transaction
and	configuration-related	events	emanating	from	the	network.	Depending	on
application	needs,	an	off-chain	database	may	be	maintained	for	convenience,	or
as	a	cache	of	ledger	state.

At	the	topmost	layer	lies	a	user-facing	application	that	exports	a	service	API
consisting	mostly	of	application-specific	capabilities,	though	administrative
operations	such	as	channel	and	chaincode	operations	may	also	be	exposed	for
system	administrators.	Typically,	a	user	interface	should	also	be	provided	for
ease	of	use,	though	a	well-defined	API	may	suffice	if	the	user	is	a	software
agent.	We	refer	to	this	layer	simply	as	the	application,	as	this	is	what	the	end
user	(or	agent)	will	see.	Also,	given	that	any	blockchain	application	and	network
is	an	agglomeration	of	diverse	participants,	this	layer	will	often	consist	of
multiple	application	stacks	tailored	to	the	different	participants.

This	architecture	should	not	be	set	in	stone;	it	is	meant	to	serve	purely	as	a
guideline	for	developers.	Depending	on	the	complexity	of	the	application,	both
the	number	of	layers	and	the	verticals	(or	distinct	applications)	may	vary.	For	a
very	simple	application	that	has	a	small	number	of	capabilities,	the	developer
may	even	choose	to	compress	the	middleware	and	application	layers	into	one.
More	generally	though,	this	decoupling	enables	different	sets	of	capabilities	to
be	exposed	to	different	network	participants.	For	example,	in	our	trade	use	case,
a	regulator	and	an	exporter	would	view	the	blockchain	in	different	ways	and
have	diverging	needs,	and	therefore	it	would	be	useful	to	build	distinct	service
sets	for	them	rather	than	force-fit	all	capabilities	into	one	monolithic	application
with	a	uniform	interface.	Yet	both	these	applications	ought	to	hide	the
complexities	of	network	operations,	such	as	the	creation	and	joining	of	channels,
or	privileged	operations	such	as	the	installation	of	chaincode	onto	peers	in

similar	ways,	which	would	therefore	benefit	from	a	common	middleware	layer.

The	ways	in	which	the	application	layers	the	users	directly	interact	with	can	be
designed	present	many	choices	and	complexities,	and	we	will	delve	into	those	in
the	latter	part	of	this	chapter.	First,	though,	we	will	describe	how	to	implement
the	guts	of	a	Fabric	application,	focusing	on	the	essential	elements.	For
instructive	purposes,	our	topmost	layer	will	be	a	simple	web	server	exposing	a
RESTful	service	API.

The	thinking	behind	this	architecture	and	the	principles	driving	it	are	independent	of	the
underlying	blockchain	technology.	To	implement	an	identical	application	on	a	different
blockchain	platform	than	Hyperledger	Fabric,	only	the	smart	contract	and	some	parts	of	the
middleware	have	to	be	reimplemented.	The	rest	of	the	application	can	remain	untouched	with
the	end	user	not	noticing	any	difference.

Building	the	application
Now	that	we	have	understood	not	just	the	methodology	of	designing	a	layered
Fabric	application	but	also	the	philosophy	behind	it,	we	can	dive	into	the
implementation.	In	the	previous	two	chapters,	we	discussed	how	to	implement
and	test	the	lowest	layer,	or	the	chaincode.	Therfore,	we	can	assume	that	the
reader	is	now	ready	to	add	the	middleware	and	application	layers,	which	is	what
we	will	demonstrate	in	the	following	sections.

A	prerequisite	for	the	testing	of	middleware	and	application	code	is	a	running
network.	Before	proceeding	to	the	next	section,	please	ensure	that	the	sample
four-organization	network	we	configured	and	launched	in	the	Setting	up	the
development	environment	section	in	Chapter	3,	Setting	the	stage	with	a	business
scenario,	is	still	up	and	running.

Middleware	–	wrapping	and	driving
the	chaincode
The	following	diagram	maps	the	transaction	stages	discussed	in	the	"Application	and
Transaction	Stages"	section	and	illustrated	in	Figure	5.1:	The	stages	in	the	creation
and	operation	of	a	blockchain	application,	to	Fabric	terms	and	using	Fabric
terminology:

Figure	5.3:	The	stages	in	the	creation	and	operation	of	a	blockchain	application

Fabric	peers,	orderers,	and	CAs	(or	MSPs)	communicate	using	gRPC	(https://grp
c.io/),	as	well	as	the	process	spawned	by	the	peer	to	run	the	chaincode	(the
process	is	really	a	Docker	container).	This	process	exports	a	service	endpoint
implementing	the	JSON	RPC	2.0	specification
(http://www.jsonrpc.org/specification)	for	channel	and	chaincode	operations.	We	can
write	a	wrapper	application	that	communicates	directly	with	chaincode	using	the
service	specification,	but	then	we	would	have	to	write	logic	to	parse	and
interpret	the	payload	as	well.	With	the	Fabric	platform	and	its	specification
likely	to	change	in	the	future,	this	is	not	necessarily	the	best	and	most
maintainable	way	to	write	an	application,	especially	for	production	purposes.
Fortunately,	Hyperledger	Fabric	provides	the	means	to	run	chaincode	operations

https://grpc.io/
http://www.jsonrpc.org/specification

while	hiding	the	details	of	the	interface	specifications	and	the	communication
protocol,	in	two	different	ways:

Command-Line	Interface	(CLI):	Fabric	provides	commands	that	can	be
run	from	a	Terminal	to	perform	the	various	operations	indicated	in	Figure
5.3:	The	stages	in	the	creation	and	operation	of	a	blockchain	application.
The	tool	to	run	these	commands	is	peer,	which	is	generated	upon
downloading	the	Fabric	source	code	and	building	it	(using	make,	or	just	make
peer).	Different	switches	can	be	used	with	this	command	to	perform
different	channel	and	chaincode	operations,	and	you	will	see	some
examples	in	this	section.
Software	Development	Kit	(SDK):	Hyperledger	provides	a	toolkit	and	set
of	libraries	for	the	easy	development	of	applications	to	wrap	the	channel
and	chaincode	operations	in	multiple	languages,	such	as	Node.js,	Java,	Go,
and	Python.	These	SDKs	also	provide	functions	to	interact	with	MSPs,	or
instances	of	the	Fabric	CA.

Although	CLI	tools	can	be	used	for	testing	and	demonstration	purposes,	they	are
inadequate	for	application	development.	The	SDK	libraries,	in	addition	to	the
functions	mentioned	previously,	provide	the	ability	to	subscribe	to	events
emanating	from	the	network,	communicating	information	about	state	changes
that	are	needed	to	drive	the	application	logic.	We	will	use	the	Node.js	SDK	to
demonstrate	how	to	build	both	our	middleware	and	the	higher-layer	application.
It	is	left	to	the	reader	to	build	equivalent	applications	in	other	languages	of	their
choice	using	one	of	the	other	SDKs.

Installation	of	tools	and	dependencies
The	functions	that	we	will	show	how	to	build	as	part	of	our	middleware	can	be
found	in	the	middleware	folder	in	the	code	repository.

Prerequisites	for	creating	and
running	the	middleware
The	reader	is	expected	to	be	familiar	with	Node.js/JavaScript	programming
(especially	the	Promise	pattern)	and	with	the	usage	of	the	Node.js	and	npm	tools:

1.	 Install	Node.js	(https://nodejs.org/en/download/)	and	npm	(https://www.npmjs.com/get
-npm).

2.	 Install	the	fabric-client	and	fabric-ca-client	npm	libraries:
You	can	install	these	packages	from	the	npm	registry,	either	manually	by
running	npm	install	<package-name>	or	by	setting	the	names	and	versions
in	your	package.json	file.	As	an	example,	the	package.json	in	the
middleware	folder	contains	the	following	entries	in	the	dependencies
section:

fabric-ca-client:	^1.1.0
fabric-client:	^1.1.0

3.	 This	instructs	npm	to	install	versions	1.1.0	of	both	of	these	packages:
Alternatively,	you	can	clone	the	Fabric	SDK	node	(https://github.com/hyp
erledger/fabric-sdk-node/)	source	code	repository	and	import	the	two
libraries	locally	as	follows:

Run	npm	install	in	the	fabric-client	and	fabric-ca-client	folders
Install	these	packages	as	dependencies,	either	manually	by
specifying	the	path	to	the	preceding	folders	in
middleware/package.json,	or	by	using	the	npm	link	command	to	add
symbolic	links	to	the	packages	in	middleware/node_modules

In	the	following	sections,	we	will	use	the	fabric-client	library	to	perform	channel
and	chaincode	operations	involving	the	peer	and	the	orderer,	and	the	fabric-ca-
client	library	to	perform	user	registration	and	enrolment	operations	involving	the
CA	(or	MSP).

https://nodejs.org/en/download/
https://www.npmjs.com/get-npm
https://github.com/hyperledger/fabric-sdk-node/

Installation	of	dependencies
Run	npm	install	in	the	middleware	folder	to	install	the	packages	(libraries)
specified	in	the	package.json	and	their	dependencies.	You	should	see	the	packages
downloaded	to	the	node_modules	folder.

A	cleaner	way	of	installing	dependencies	and	configuring	the	middleware	for
regular	operation	is	automated	building	using	Makefile.	You	can	simply	run	make	in
the	middleware	folder;	see	Chapter	8,	Agility	In	A	blockchain	network,	for	more
details	on	setting	up	and	building	your	development	and	testing	environment.

Creating	and	running	the	middleware
We	will	now	write	functions	to	execute	and	orchestrate	the	stages	illustrated	in
Figure	5.3:	The	stages	in	the	creation	and	operation	of	a	blockchain	application.
But	first,	we	will	give	an	overview	of	the	various	configuration	parameters	that
must	be	set	for	the	application	to	work	as	intended

Network	configuration
The	first	step	in	writing	middleware	is	collecting	all	the	configuration
information	necessary	to	identify	and	connect	to	the	various	elements	of	the
network	we	created	and	launched	in	the	previous	section.	It	is	useful,	especially
when	writing	code	in	JavaScript,	to	express	such	configurations	in	JSON	format.
In	our	sample	code,	the	config.json	file	serves	this	purpose.	This	file	contains	the
description	of	a	network,	whose	attributes	are	contained	in	the	trade-network
object.	Each	property	of	this	object	describes	the	configuration	of	each	unique
organization	that	is	part	of	the	network,	except	for	a	property	called	the	orderer,
which	simply	refers	to	the	orderer	node.	(Note:	this	is	sufficient	for	our	simple
network	containing	just	one	orderer	node.)	Let's	examine	what	must	be	specified
in	each	organization's	description	by	taking	the	Exporterorg	property	as	an
example:

"exporterorg":	{

		"name":	"peerExporterOrg",

		"mspid":	"ExporterOrgMSP",

		"ca":	{

				"url":	"https://localhost:7054",

				"name":	"ca-exporterorg"

		},

		"peer1":	{

				"requests":	"grpcs://localhost:7051",

				"events":	"grpcs://localhost:7053",

				"server-hostname":	"peer0.exporterorg.trade.com",

				"tls_cacerts":	"../network/crypto-

config/peerOrganizations/exporterorg.trade.com/peers/peer0.exporterorg.trade.com/msp/tlscacerts/tlsca.exporterorg.trade.com-

cert.pem"

		}

},

The	mspid	value	must	match	the	one	specified	in	network/configtx.yaml	for	our
middleware	to	be	compatible	with	the	channel	artefacts	and	cryptographic
material	created	for	the	network.	The	name	and	port	information	for	the	CA	must
match	what	was	specified	in	network/docker-compose-e2e.yaml.	Since	we	have	just	one
peer	in	each	organization,	we	name	it	peer	for	convenience,	though	one	can
easily	define	a	different	schema	for	a	multi-peer	organization	setup.	Note	that	the
peer	exports	services	for	peer	requests	as	well	as	for	event	subscriptions,	and	the
ports	match	those	exposed	in	network/base/docker-compose-base.yaml.	The	server-
hostname	must	also	match	that	specified	in	both	configtx.yaml	and	the	docker-
compose	configurations.	As	our	network	elements	connect	using	TLS,	the	path

to	the	peer's	TLS	certificate	must	also	be	specified	here.

Lastly,	if	you	compare	the	preceding	schema	snippet	with	the	configurations	of
the	other	organizations,	you	will	notice	that	the	ports	listed	exactly	matches
those	exposed	in	the	docker-compose	configurations.	For	example,	the	peers	in
the	exporter,	importer,	carrier,	and	regulator	organizations	listen	for	requests	on
ports	7051,	8051,	9051,	and	10051,	respectively.	The	hostnames	in	the	URLs	simply
refer	to	localhost,	as	that	is	where	all	our	network	element's	containers	are
running.

Endorsement	policy
The	next	step	is	to	frame	an	endorsement	policy	for	our	chaincode	that	will	be
committed	to	the	ledger	during	the	instantiation.	This	endorsement	policy
dictates	how	many	peers,	belonging	to	what	roles	and	organizations,	need	to
endorse	a	ledger	commitment	transaction	(or	invocation).	In	the	sample	code,
different	endorsement	policies	are	listed	in	constants.js,	which	contains	various
settings	and	keywords	used	by	our	middleware.	The	one	that	we	will	employ	is
ALL_FOUR_ORG_MEMBERS:

var	FOUR_ORG_MEMBERS_AND_ADMIN	=	[

		{	role:	{	name:	'member',	mspId:	'ExporterOrgMSP'	}	},

		{	role:	{	name:	'member',	mspId:	'ImporterOrgMSP'	}	},

		{	role:	{	name:	'member',	mspId:	'CarrierOrgMSP'	}	},

		{	role:	{	name:	'member',	mspId:	'RegulatorOrgMSP'	}	},

		{	role:	{	name:	'admin',	mspId:	'TradeOrdererMSP'	}	}

];

var	ALL_FOUR_ORG_MEMBERS	=	{

		identities:	FOUR_ORG_MEMBERS_AND_ADMIN,

		policy:	{

				'4-of':	[{	'signed-by':	0	},	{	'signed-by':	1	},	{	'signed-by':	2	},	{	'signed-by':	

3	}]

		}

};

The	list	of	principals	is	specified	in	the	identities	attribute	of	the	policy	and
refers	to	member	(or	ordinary)	users	of	the	four	peer	organizations,	as	well	as
administrator	users	of	the	orderer	organization.	The	policy	attribute	here	states
that	an	endorsement	is	required	from	a	member	of	each	of	the	four	peer
organizations;	in	all,	four	signatures	will	be	required.

The	variable	TRANSACTION_ENDORSEMENT_POLICY	is	set	to	ALL_FOUR_ORG_MEMBERS	in	constants.js
by	default,	and	will	be	used	to	configure	the	channel	endorsement	policy	later	in
this	section.

User	records
For	both	the	channel	world	state	and	the	user	keys	and	certificates	for	the
respective	organizations,	we	will	use	a	file-based	store,	as	specified	in
clientUtils.js:

var	Constants	=	require('./constants.js');

var	tempdir	=	Constants.tempdir;

module.exports.KVS	=	path.join(tempdir,	'hfc-test-kvs');

module.exports.storePathForOrg	=	function(org)	{

		return	module.exports.KVS	+	'_'	+	org;

};

In	constants.js,	tempdir	is	initialized	as	follows:

var	tempdir	=	"../network/client-certs";

Alternatively,	you	can	also	set	the	storage	location	to	lie	in	the	temporary	folder
designated	by	your	operating	system	using	the	os.tmpdir()	function;	you	will	just
need	to	create	a	subfolder	there(say	<folder-name>.)	On	a	typical	Linux,	system,
this	storage	location	will	default	to	/tmp/<folder-name>/,	and	folders	will	be	created
there	for	each	organization.	As	we	run	the	various	operations,	we	will	see	these
folders	getting	generated	and	files	getting	added	to	them.

Client	registration	and	enrollment
Although	cryptographic	material	for	organization	users	can	be	created	statically
using	the	cryptogen	tool,	we	must	build	capabilities	in	the	middleware	to
dynamically	create	user	identities	and	credentials,	and	enable	those	users	to	sign
in	to	the	network	to	submit	transactions	and	query	the	ledger	state.	These
operations	require	the	mediation	of	users	with	privileged	access	(or
administrators),	who	must	be	created	when	fabric-ca-server	is	started.	By	default,
an	administrative	user	is	given	the	ID	admin	and	the	password	adminpw,	which	is
what	we	will	use	for	our	exercise	in	this	section.	The	network	that	we	created
and	launched	uses	these	defaults,	and	it	is	left	to	the	reader	to	modify	them
in	fabric-ca-server	and	start	commands	in	network/docker-compose-e2e.yaml	(the
following	is	from	the	exporter-ca	section):

fabric-ca-server	start	--ca.certfile	/etc/hyperledger/fabric-ca-server-

config/ca.exporterorg.trade.com-cert.pem	--ca.keyfile	/etc/hyperledger/fabric-ca-

server-config/cc58284b6af2c33812cfaef9e40b8c911dbbefb83ca2e7564e8fbf5e7039c22e_sk	-b	

admin:adminpw	-d

The	steps	to	create	a	user	through	an	administrator	are	as	follows:

1.	 Load	administrative	user	credentials	from	the	local	storage
2.	 If	thee	credentials	don't	exist,	enroll,	or	sign	in,	the	administrator	to	the

Fabric	CA	server	and	obtain	their	credentials	(private	key	and	enrollment
certificate)

3.	 Have	the	administrative	user	register	another	user	with	a	given	ID,
specifying	roles	and	affiliations,	with	the	Fabric	CA	server

4.	 Using	a	secret	returned	upon	registration,	enroll	the	new	user	and	obtain
credentials	for	that	user

5.	 Save	the	credentials	to	the	local	storage

Sample	code	for	this	can	be	found	in	clientUtils.js,	with	the	following	code
snippets	mostly	being	from	the	getUserMember	function,	which	takes	administrator
credentials,	the	name	of	the	organization	to	which	the	user	must	be	enrolled,	and
the	name/ID	of	the	user	to	enroll.	A	handle	to	a	client	(an	instance	of	fabric-
client,	or	a	client	object	(https://fabric-sdk-node.github.io/Client.html)	must	also	be
passed	to	the	function:

https://fabric-sdk-node.github.io/Client.html

var	cryptoSuite	=	client.getCryptoSuite();

if	(!cryptoSuite)	{

		cryptoSuite	=	Client.newCryptoSuite();

		if	(userOrg)	{

				cryptoSuite.setCryptoKeyStore(Client.newCryptoKeyStore({path:	

module.exports.storePathForOrg(ORGS[userOrg].name)}));

				client.setCryptoSuite(cryptoSuite);

		}

}

The	preceding	code	associates	the	client	handle	with	the	local	store,	partitioned
by	organization,	to	store	the	credentials	of		the	administrator	and	other	users
created	on	the	fly:

var	member	=	new	User(adminUser);

member.setCryptoSuite(cryptoSuite);

This	code	ensures	that	the	administrator	user	handle	will	be	associated	with	our
store:

var	copService	=	require('fabric-ca-client/lib/FabricCAClientImpl.js');

var	caUrl	=	ORGS[userOrg].ca.url;

var	cop	=	new	copService(caUrl,	tlsOptions,	ORGS[userOrg].ca.name,	cryptoSuite);

return	cop.enroll({

		enrollmentID:	adminUser,

		enrollmentSecret:	adminPassword

}).then((enrollment)	=>	{

		console.log('Successfully	enrolled	admin	user');

		return	member.setEnrollment(enrollment.key,	enrollment.certificate,	

ORGS[userOrg].mspid);

})

Here,	we	use	the	fabric-ca-client	library	to	connect	to	the	fabric-ca-server	instance
associated	with	a	given	organization	(whose	URL	can	be	obtained	from	our
config.json;	for	example,	the	caUrl	for	the	exporter	organization	will	be
https://localhost:7054).	The	enroll	function	allows	the	administrator	to	log	in	with
the	MSP,	and	obtain	the	enrollment	key	and	certificate.

Now	that	we	have	a	handle	to	the	administrator	user	in	the	form	of	the	member
object,	we	can	use	it	to	enroll	a	new	user	with	the	user	ID,	which	is	represented
by	their	username,	as	follows:

var	enrollUser	=	new	User(username);

return	cop.register({

		enrollmentID:	username,

		role:	'client',

		affiliation:	'org1.department1'

},	member).then((userSecret)	=>	{

		userPassword	=	userSecret;

		return	cop.enroll({

				enrollmentID:	username,

				enrollmentSecret:	userSecret

		});

}).then((enrollment)	=>	{

		return	enrollUser.setEnrollment(enrollment.key,	enrollment.certificate,	

ORGS[userOrg].mspid);

}).then(()	=>	{

		return	client.setUserContext(enrollUser,	false);

}).then(()	=>	{

		return	client.saveUserToStateStore();

})

During	registration,	we	can	specify	what	the	user's	roles	will	be,	which	in	the
preceding	code	is	client,	allowing	the	username	to	submit	invocations	and
queries	to	the	chaincode.	The	affiliation	specified	here	is	one	of	the	subdivisions
within	an	organization	that	are	specified	in	a	Fabric	CA	server's	configuration	(ht
tp://hyperledger-fabric-ca.readthedocs.io/en/latest/serverconfig.html)	(updating	this
configuration	is	left	as	an	exercise	to	the	reader;	here,	we	will	use	the	default
affiliation).	Using	the	returned	secret,	the	username	is	now	enrolled	with	the
server,	and	its	key	and	enrollment	certificate	are	saved.

The	call	to	client.setUserContext	associates	this	user	with	the	client	handle,	and
client.saveUserToStateStore	saves	the	user's	credentials	to	our	local	store	on	the	file
system.

Similar	functions	to	get	handles	to	administrator	users	are	getAdmin	and	getMember,
also	defined	in	clientUtils.js.	The	former	retrieves	an	administrator	user	whose
credentials	were	created	using	cryptogen,	whereas	the	latter	creates	a	new	admin
member	dynamically.

http://hyperledger-fabric-ca.readthedocs.io/en/latest/serverconfig.html

Creating	a	channel
To	create	our	trade	channel,	we	first	need	to	instantiate	a	fabric-client	instance
and	a	handle	to	the	orderer	using	the	configuration	in	config.json	(see
the	createChannel	function	in	create-channel.js):

var	client	=	new	Client();

var	orderer	=	client.newOrderer(

		ORGS.orderer.url,

		{

				'pem':	caroots,

				'ssl-target-name-override':	ORGS.orderer['server-hostname']

		}

);

We	use	a	file-based	key-value	store	to	save	the	ledger	world	state	as	follows	(it	is
left	as	an	exercise	to	the	reader	to	try	out	other	types	of	store,	such	as	CouchDB,
using	CouchDBKeyValueStore.js):

utils.setConfigSetting('key-value-store',	'fabric-

client/lib/impl/FileKeyValueStore.js');

Next,	we	must	enroll	an	administrator	user	for	the	orderer	(using	the
mechanisms	discussed	in	the	previous	segment).	After	a	successful	enrollment,
the	channel	configuration	that	we	created	using	the	configtxgen	tool	(see
network/channel-artifacts/channel.tx)	must	be	extracted.	The	path	to	this
configuration	file	is	set	in	constants.js:

let	envelope_bytes	=	fs.readFileSync(path.join(__dirname,	Constants.networkLocation,	

Constants.channelConfig));

config	=	client.extractChannelConfig(envelope_bytes);

We	now	need	to	enroll	an	administrator	user	for	each	of	our	four	organizations.
Each	of	these	four	admins,	as	well	as	the	orderer	admin,	must	sign	the	channel
configuration,	and	the	signatures	collected	as	follows:

ClientUtils.getSubmitter(client,	true	/*get	the	org	admin*/,	org)

.then((admin)	=>	{

		var	signature	=	client.signChannelConfig(config);

		signatures.push(signature);

});

The	getSubmitter	function	is	defined	in	clientUtils.js,	and	is	an	indirect	way	of
associating	a	member	(either	ordinary	or	administrator)	of	a	given	organization

with	the	client	object.	In	other	words,	it	associates	the	client	object	with	the
signing	identity	(credentials	and	MSP	identifications)	of	a	user.	Underneath,
getSubmitter	uses	the	functions	getAdmin,	getUserMember,	and	getMember,	which	we
described	in	an	earlier	section.

getOrderAdminSubmitter	is	analogous	to	getSubmitter	and	returns	a	handle	to	an	admin	user	of	the
orderer’s	organization.

Finally,	we	are	ready	to	build	a	channel	creation	request	and	submit	it	to	the
orderer:

let	tx_id	=	client.newTransactionID();

var	request	=	{

		config:	config,

		signatures	:	signatures,

		name	:	channel_name,

		orderer	:	orderer,

		txId	:	tx_id

};

return	client.createChannel(request);

The	actual	creation	of	the	channel	may	take	a	few	seconds,	so	the	application
logic	should	wait	for	a	while	before	returning	a	successful	result.	The	channel_name
parameter	is	set	in	clientUtils.js	to	tradechannel,	which	is	what	we	set	it	to	when
we	launched	our	network	(see	network/trade.sh).

The	channel	creation	step	involves	initializing	the	blockchain	with	the	genesis
block	we	created	earlier	in	this	chapter	using	configtxgen.	The	genesis	block	is	just
the	first	configuration	block	that	is	appended	to	the	chain.	A	configuration	block
consists	a	specification	of	the	channel	and	the	organizations	that	are	part	of	it,
among	other	things;	such	a	block	contains	no	chaincode	transactions.	We	will
deal	with	configuration	blocks	again	in	Chapter	9,	Life	in	a	Blockchain	Network,
when	we	discuss	how	to	augment	networks.

Now,	all	we	need	to	do	to	create	a	channel	is	call	the
createChannel('tradechannel')	function	and	wait	for	the	result.	This	is	the	first	step	in
our	test	code,	createTradeApp.js,	which	executes	the	basic	sequence	of	operations
illustrated	in	Figure	5.3:	The	stages	in	the	creation	and	operation	of	a
blockchain	application:

var	Constants	=	require('./constants.js');

var	createChannel	=	require('./create-channel.js');

createChannel.createChannel(Constants.CHANNEL_NAME).then(()	=>	{	})

The	code	we	use	to	associate	different	signing	identities	with	a	common	client	object,	and	then

sign	a	channel	configuration,	all	in	a	single	process,	is	purely	for	demonstrative	purposes.	In
a	real-life	production	application,	the	signing	identities	of	different	users	belonging	to
different	organizations	are	private	and	must	be	guarded;	hence	there	is	no	question	of	pooling
them	together	in	a	common	location.	Instead,	the	channel	configuration	must	be	signed
independently	by	different	organizations’	administrators	and	passed	around	using	some	out-
of-band	mechanism	to	accumulate	the	signatures	(and	also	verify	them.)	Similar	mechanisms
must	be	employed	when	a	configuration	is	updated	(see	Chapter	9,	Life	in	a	Blockchain
Network)	Independent,	decentralized	procedures	must	also	be	followed	for	channel	joining
and	chaincode	installation,	though	we	demonstrate	the	basic	mechanisms	using	centralized
processes	for	convenience.

https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=176&action=edit#post_435

Joining	a	channel
Now	that	tradechannel	has	been	created,	our	four	peers,	one	in	each	organization,
must	be	joined	to	the	channel,	a	step	that	initializes	the	ledger	on	each	node	and
prepares	the	peer	to	run	chaincode	and	transactions	on	it.	For	this,	we	will	need
to	reuse	the	client	handle	created	in	the	previous	step	or	instantiate	one	using	a
similar	sequence	of	operations.	In	addition,	we	must	instantiate	a	handle	to	the
channel,	register	the	orderer,	and	obtain	the	genesis	block	(implicitly	sent	to	the
orderer	in	the	creation	step	using	the	channel	configuration),	as	indicated	by	the
following	code	snippets	from	the	joinChannel	function	in	join-channel.js:

var	channel	=	client.newChannel(channel_name);

channel.addOrderer(

		client.newOrderer(

				ORGS.orderer.url,

				{

						'pem':	caroots,

						'ssl-target-name-override':	ORGS.orderer['server-hostname']

				}

)

);

tx_id	=	client.newTransactionID();

let	request	=	{	txId	:	tx_id	};

return	channel.getGenesisBlock(request);

The	transaction	ID	argument	is	optional	in	the	preceding	getGenesisBlock	call.
Now,	for	each	organization,	we	must	obtain	a	handle	to	an	administrator	user
who	will	then	submit	a	channel	joining	request	for	the	peer	belonging	to	that
organization:

return	ClientUtils.getSubmitter(client,	true	/*	get	peer	org	admin	*/,	org);

for	(let	key	in	ORGS[org])

		if	(ORGS[org].hasOwnProperty(key))	{

				if	(key.indexOf('peer')	===	0)	{

						data	=	fs.readFileSync(path.join(__dirname,	ORGS[org][key]['tls_cacerts']));

						targets.push(

								client.newPeer(

										ORGS[org][key].requests,

										{

												pem:	Buffer.from(data).toString(),

												'ssl-target-name-override':	ORGS[org][key]['server-hostname']

										}

)

);

				}

		}

}

tx_id	=	client.newTransactionID();

let	request	=	{

		targets	:	targets,

		block	:	genesis_block,

		txId	:	tx_id

};

let	sendPromise	=	channel.joinChannel(request,	40000);

As	in	the	channel	creation	process,	the	getSubmitter	function	associates	the	signing
identity	of	an	administrator	of	a	particular	organization	with	the	client	object
before	submitting	the	channel	join	request.	This	request	contains	the	genesis
block	as	well	as	the	configuration	of	every	peer	in	that	organization	(loaded	from
the	attributes	containing	the	peer	prefix	within	each	organization	in	config.json,	as
you	can	see	in	the	above	code.)

A	generous	wait	time	of	40	seconds	is	indicated	above	as	this	process	can	take	a
while	to	complete.	This	join	process	needs	to	be	executed	independently	by	an
administrator	in	each	organization;	hence,	the	function	joinChannel(<org-name>)	is
called	4	times	in	sequence	the	main	function	processJoinChannel,	which	is	called	in
our	test	script	in	createTradeApp.js	as	follows:

var	joinChannel	=	require('./join-channel.js');

joinChannel.processJoinChannel();

In	a	typical	production	network,	each	organization	will	independently	run	the	join	process,
but	only	for	its	peers.	The	orchestration	code	(processJoinChannel	in	join-channel.js)	that	we	use	in
our	repository	is	meant	for	convenience	and	testing.

Installation	of	chaincode
Installation	of	chaincode	results	in	the	copying	of	source	code	to	the	peers	we
have	selected	to	be	endorsers,	and	every	installation	is	associated	with	a	user-
defined	version.	The	main	function	installChaincode	is	implemented	in	install-
chaincode.js.	This	function	in	turn	calls	the	installChaincodeInOrgPeers	function	for
each	of	the	4	organizations	in	sequence;	the	latter	function	installs	chaincode	on
the	peers	of	a	given	organization.	As	in	the	case	of	a	channel	join,	we	create	both
client	and	channel	handles	for	a	given	organization,	enroll	an	administrator	user
for	that	organization,	and	associate	that	user	with	the	client	handle.	This	next
step	is	to	create	an	installation	proposal	and	submit	it	to	the	orderer	as	follows:

var	request	=	{

		targets:	targets,

		chaincodePath:	chaincode_path,

		chaincodeId:	Constants.CHAINCODE_ID,

		chaincodeVersion:	chaincode_version

};

client.installChaincode(request);

The	targets	refer	to	the	configurations	of	the	endorsing	peers	in	the	organization,
and	are	loaded	from	config.json.	chaincodeId	and	chaincodeVersion	can	be	set	by	the
caller	(and	defaults	are	set	in	constants.js	as	tradecc	and	v0,	respectively),	but	the
chaincodePath	must	refer	to	a	location	that	contains	the	source	code.	In	our
scenario,	the	location	refers	to	a	path	on	the	local	file	system:
github.com/trade_workflow.

Internally	in	the	SDK,	the	installation	request	packages	the	chaincode’s	source
code	into	a	prescribed	format	called	ChaincodeDeploymentSpec	(CDS)(https://github.co
m/hyperledger/fabric/blob/release-1.1/protos/peer/chaincode.proto).	This	package	is	then
signed	(by	the	organization	administrator	associated	with	the	client	object)	to
create	a	SignedChaincodeDeploymentSpec(https://github.com/hyperledger/fabric/blob/release-
1.1/protos/peer/signed_cc_dep_spec.proto),	which	is	then	sent	to	the	lifecycle	system
chaincode	(LSCC)	for	installation.

The	above	procedure	describes	the	simple	case	where	each	instance	of	a	Signed
CDS	has	only	the	signature	of	the	identity	associated	with	the	client	that	issues
the	installation	request.	A	more	complex	scenario	is	supported	by	Fabric

https://github.com/hyperledger/fabric/blob/release-1.1/protos/peer/chaincode.proto
https://github.com/hyperledger/fabric/blob/release-1.1/protos/peer/signed_cc_dep_spec.proto

whereby	a	CDS	can	be	passed	(out-of-band)	to	different	clients	(of	the	various
organizations)	and	signed	by	each	before	the	installation	requests	are	received.
The	reader	is	encouraged	to	try	out	this	variation	using	the	available	API
functions	and	Fabric	data	structures(http://hyperledger-fabric.readthedocs.io/en/lates
t/chaincode4noah.html).

The	success	of	an	installation	request	is	determined	by	checking	the	proposal
response	from	each	target	peer	as	follows:

if	(proposalResponses	&&	proposalResponses[i].response	&&	

proposalResponses[i].response.status	===	200)	{

		one_good	=	true;

		logger.info('install	proposal	was	good');

}

Finally,	to	orchestrate	the	installation	on	the	entire	network,	we	call	the
installChaincode	function	defined	in	install-chaincode.js.	For	the	fabric-client	to
know	where	to	load	the	chaincode	source	from,	we	temporarily	set	the	GOPATH	in	the
process	to	point	to	the	right	location	in	our	project,	which	is	the	chaincode	folder:

This	only	works	for	chaincode	written	in	Go

process.env.GOPATH	=	path.join(__dirname,Constants.chaincodeLocation);

For	a	successful	installation,	the	chaincode	folder	must	contain	a	subfolder	named
src,	within	which	the	chaincode	path	sent	in	the	installation	proposal	must	point	to
the	actual	code.	As	you	can	see,	this	finally	resolves	to
chaincode/src/github.com/trade_workflow	in	our	code	repository,	which	indeed	contains
the	source	code	we	developed	in	Chapter	4,	Designing	a	Data	and	Transaction
Model	with	Golang.

In	our	createTradeApp.js	script,	we	can	now	simply	call:

var	installCC	=	require('./install-chaincode.js');

installCC.installChaincode(Constants.CHAINCODE_PATH,	Constants.CHAINCODE_VERSION);

In	a	typical	production	network,	each	organization	will	independently	run	the	installation
process	(defined	in	the	installChaincodeInOrgPeers	function),	but	only	for	its	endorsing	peers.	The
orchestration	code	(installChaincode	in	install-chaincode.js)	that	we	use	in	our	repository	is
meant	for	convenience	and	testing.

http://hyperledger-fabric.readthedocs.io/en/latest/chaincode4noah.html

Instantiation	of	chaincode
Now	that	the	endorsing	peers	in	the	network	have	the	chaincode,	we	must
instantiate	that	chaincode	across	our	channel	to	ensure	that	all	copies	of	the
ledger	are	initialized	with	the	right	dataset	(or	key-value	pairs).	This	is	the	final
step	in	the	setup	of	our	smart	contract	before	we	can	open	it	up	for	regular
operation.	Instantiation	is	a	transaction	that	invokes	the	LSCC	to	initialize	a
chaincode	on	a	channel,	thereby	binding	the	two	and	isolating	the	former’s	state
to	the	latter.

This	operation	should	be	triggered	centrally	by	any	of	the	organizations
authorized	to	initialize	the	chaincode	(in	our	sample	code,	we	use	the
administrator	of	the	Importer's	organization).	Again,	this	follows	the	simple
scenario	(described	in	the	installation	section	earlier)	where	the	chaincode
package	is	signed	by	a	single	organization	administrator.

The	default	channel	instantiation	policy	requires	any	channel	MSP	administrator	to	trigger
the	operation,	but	a	different	policy	can	be	set	in	the	Signed	CDS	structure	if	required.)	In
addition,	the	entity	that	triggers	the	instantiation	operation	must	also	be	configured	as	a
writer	on	the	channel.	Our	procedure	to	create	a	channel	configuration	using	configtxgen
implicitly	gave	write	permissions	to	administrators	of	the	4	organizations.	(A	detailed
discussion	of	channel	configuration	policy	is	beyond	the	scope	of	this	book.)

The	main	function	to	implement	chaincode	instantiation	is	implemented
in	instantiate-chaincode.js	as	instantiateOrUpgradeChaincode.	This	function	can	be	used
both	to	instantiate	a	newly	deployed	chaincode	or	update	one	that	has	already
been	running	on	the	channel	(see	Chapter	9,	Life	in	a	Blockchain	Network)	As	in
the	previous	stages,	we	must	create	client	and	channel	handles,	and	associate	the
channel	handle	with	the	client.	In	addition,	all	the	endorsing	peers	in	the	network
must	be	added	to	the	channel,	and	then	the	channel	object	must	be	initialized
with	the	MSPs	associated	with	the	channel	(from	each	of	the	four	organizations):

channel.initialize();

This	sets	up	the	channel	to	verify	certificates	and	signatures,	for	example,	from
endorsements	received	from	the	peers.	Next,	we	build	a	proposal	for
instantiation	and	submit	it	to	all	of	the	endorsing	peers	on	the	channel	(snippet
from	the	buildChaincodeProposal	function):

https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=176&action=edit#post_435

var	tx_id	=	client.newTransactionID();

var	request	=	{

		chaincodePath:	chaincode_path,

		chaincodeId:	Constants.CHAINCODE_ID,

		chaincodeVersion:	version,

		fcn:	funcName,

		args:	argList,

		txId:	tx_id,

		'endorsement-policy':	Constants.TRANSACTION_ENDORSEMENT_POLICY

};

channel.sendInstantiateProposal(request,	300000);

The	path	to	the	chaincode,	and	the	ID	and	version,	must	match	what	was
supplied	in	the	installation	proposal.	In	addition,	we	must	supply	the	function
name	and	argument	list	that	will	be	sent	to	the	chaincode	and	executed.	(In	our
chaincode,	this	will	execute	the	Init	function.)	Also	note	that	the	proposal
contains	the	endorsement	policy	(Constants.TRANSACTION_ENDORSEMENT_POLICY)	we	set
earlier,	which	requires	a	member	from	each	of	the	four	organizations	to	endorse
a	chaincode	invocation.	The	proposal	responses	(one	for	each	endorsing	peer)
returned	by	the	orderer	must	be	validated	in	the	same	way	as	in	the	installation
stage.	Using	the	result	of	the	preceding	channel.sendInstantiateProposal	call,	we
must	now	build	an	instantiation	transaction	request	and	submit	it	to	the	orderer:

var	proposalResponses	=	results[0];

var	proposal	=	results[1];

var	request	=	{

		proposalResponses:	proposalResponses,

		proposal:	proposal

};

channel.sendTransaction(request);

A	successful	response	to	channel.sendTransaction	will	allow	our	middleware	to
proceed	on	the	basis	that	the	instantiation	was	successfully	submitted.	This	does
not	indicate,	though,	that	the	instantiation	will	successfully	conclude	with	a
commitment	to	the	shared	ledger;	for	that,	our	code	will	have	to	subscribe	to
events,	and	we	will	see	how	to	do	that	later	in	this	section.

Our	script	in	createTradeApp.js	triggers	chaincode	instantiation	as	follows:

var	instantiateCC	=	require('./instantiate-chaincode.js');

instantiateCC.instantiateOrUpgradeChaincode(

		Constants.IMPORTER_ORG,

		Constants.CHAINCODE_PATH,

		Constants.CHAINCODE_VERSION,

		'init',

		['LumberInc',	'LumberBank',	'100000',	'WoodenToys',	'ToyBank',	'200000',	

'UniversalFrieght',	'ForestryDepartment'],

		false

);

The	last	parameter	is	set	to	false,	indicating	that	an	instantiation	must	be
performed	and	not	an	upgrade.	The	first	parameter	(Constants.IMPORTER_ORG)
indicates	that	the	instantiation	request	must	be	submitted	by	a	member
(administrator	in	this	context)	of	the	importer’s	organization.

If	the	instantiation	was	successful,	the	chaincode	will	be	built	in	Docker
containers,	one	corresponding	to	each	endorsing	peer,	and	deployed	to	receive
requests	on	behalf	of	their	peers.	If	you	run	docker	ps	-a,	you	should	see
something	like	this	in	addition	to	the	ones	created	upon	launching	the	network:

CONTAINER	ID				IMAGE				COMMAND				CREATED				STATUS				PORTS				NAMES

b5fb71241f6d					dev-peer0.regulatororg.trade.com-tradecc-v0-

cbbb0581fb2b9f86d1fbd159e90f7448b256d2f7cc0e8ee68f90813b59d81bf5				"chaincode	-

peer.add..."				About	a	minute	ago				Up	About	a	minute								dev-

peer0.regulatororg.trade.com-tradecc-v0

077304fc60d8				dev-peer0.importerorg.trade.com-tradecc-v0-

49020d3db2f1c0e3c00cf16d623eb1dddf7b649fee2e305c4d2c3eb5603a2a9f				"chaincode	-

peer.add..."				About	a	minute	ago				Up	About	a	minute								dev-

peer0.importerorg.trade.com-tradecc-v0

8793002062d7				dev-peer0.carrierorg.trade.com-tradecc-v0-

ec83c1904f90a76404e9218742a0fc3985f74e8961976c1898e0ea9a7a640ed2				"chaincode	-

peer.add..."				About	a	minute	ago				Up	About	a	minute								dev-

peer0.carrierorg.trade.com-tradecc-v0

9e5164bd8da1				dev-peer0.exporterorg.trade.com-tradecc-v0-

dc2ed9ea732a90d6c5ffb0cd578dfb614e1ba14c2936b0ae785f30ea0f37da56				"chaincode	-

peer.add..."				About	a	minute	ago				Up	About	a	minute								dev-

peer0.exporterorg.trade.com-tradecc-v0

Invoking	the	chaincode
Now	that	we	have	finished	setting	up	our	channel	and	installing	chaincode	for
trade,	we	need	to	implement	functions	to	execute	chaincode	invocations.	Our
code	for	this	lies	in	the	invokeChaincode	function	in	invoke-chaincode.js.

The	procedure	to	invoke	the	chaincode	is	the	same	as	we	did	for	instantiation,	and
the	code	is	similar	as	well.	The	caller	must	build	a	transaction	proposal
consisting	of	the	name	of	the	chaincode	function	to	be	invoked	and	the	arguments
to	be	passed	to	it.	Just	providing	the	chaincode	ID	(tradecc	in	our	implementation)
is	sufficient	to	identify	the	chaincode	process	to	guide	the	request	to:

tx_id	=	client.newTransactionID();

var	request	=	{

		chaincodeId	:	Constants.CHAINCODE_ID,

		fcn:	funcName,

		args:	argList,

		txId:	tx_id,

};

channel.sendTransactionProposal(request);

One	difference	with	the	instantiation	proposal	is	that	this	operation	does	not
typically	require	an	administrative	user	in	the	organization;	any	ordinary
member	may	suffice.	This	proposal	must	be	sent	to	enough	endorsing	peers	to
collect	the	right	set	of	signatures	to	satisfy	our	endorsement	policy.	This	is	done
by	adding	all	four	peers	in	our	network	to	the	channel	object	(which	must	be
created	and	initialized	in	the	same	way	as	in	the	previous	stages).	Once	the
proposal	responses	have	been	collected	and	validated	in	the	same	way	as	the
instantiation	proposals	were,	a	transaction	request	must	be	built	and	sent	to	the
orderer:

var	request	=	{

		proposalResponses:	proposalResponses,

		proposal:	proposal

};

channel.sendTransaction(request);

We	call	invokeChaincode	from	our	test	script	in	createTradeApp.js.	The	chaincode
function	we	would	like	to	execute	is	requestTrade,	which	chronologically	is	the
first	function	that	ought	to	be	invoked	by	a	user	in	an	importer's	role	(recall	that
we	built	access	control	logic	within	our	chaincode	to	ensure	that	only	a	member	of

the	Importer's	organization	may	submit	a	requestTrade):

var	invokeCC	=	require('./invoke-chaincode.js');

invokeCC.invokeChaincode(Constants.IMPORTER_ORG,	Constants.CHAINCODE_VERSION,	

'requestTrade',	['2ks89j9',	'50000','Wood	for	Toys',	'Importer']);

The	last	parameter	('Importer')	simply	indicates	the	ID	of	the	user	in	the
importer’s	organization	who	is	to	submit	this	transaction	request.	In	the	code,	the
credentials	for	this	user	are	loaded	if	the	user	has	already	enrolled	with	the	CA,
otherwise	a	new	user	with	that	ID	is	registered	using	the	clientUtils.getUserMember
function.

As	in	the	instantiation	case,	a	successful	channel.sendTransaction	call	simply
indicates	that	the	orderer	accepted	the	transaction.	Only	subscribing	to	an	event
will	tell	us	whether	the	transaction	was	successfully	committed	to	the	ledger.

Querying	the	chaincode
A	chaincode	query	is	somewhat	simpler	to	implement	as	it	involves	the	entire
network,	but	simply	requires	communication	from	client	to	peer.

Client	and	channel	handles	should	be	created	as	in	the	previous	stages,	but	this
time,	we	will	select	just	one	or	more	peers	from	the	caller's	(or	client's)
organization	to	associate	with	the	channel	object.	Then,	we	must	create	a	query
request	(identical	to	an	invocation	proposal	request)	and	submit	it	to	the	selected
peers:

var	request	=	{

		chaincodeId	:	Constants.CHAINCODE_ID,

		fcn:	funcName,

		args:	argList

};

channel.queryByChaincode(request);

The	responses	to	the	query	can	be	collected	and	compared	before	being	returned
to	the	caller.	The	complete	implementation	can	be	found	in	the	queryChaincode
function	in	query-chaincode.js.	We	test	this	function	by	running	a	getTradeStatus
chaincode	query	in	our	createTradeApp.js	script:

var	queryCC	=	require('./query-chaincode.js');

queryCC.queryChaincode(Constants.EXPORTER_ORG,	Constants.CHAINCODE_VERSION,	

'getTradeStatus',	['2ks89j9'],	'Exporter');

As	with	an	invocation,	we	specify	a	user	ID	(‘Exporter’)	and	organization:	here
we	want	a	member	of	the	exporter’s	organization	to	check	the	status	of	a	trade
request.

Since	a	query	is	local	to	the	client	and	its	associated	peers,	the	response	is
returned	immediately	to	the	client	and	does	not	have	to	be	subscribed	to	(as	in
the	case	of	invocation).

Completing	the	loop	–	subscribing	to
blockchain	events
As	we	have	seen	in	previous	chapters,	commitments	to	the	shared	ledger	on	a
permissioned	blockchain	require	a	consensus	among	the	network	peers.
Hyperledger	Fabric	in	its	v1	incarnation	has	an	even	more	unique	process	to
commit	to	the	ledger:	the	transaction	execution,	ordering,	and	commitment
processes	are	all	decoupled	from	each	other	and	framed	as	stages	in	a	pipeline
where	endorsers,	orderers,	and	committers	carry	out	their	tasks	independent	of
each	other.	Therefore,	any	operation	that	results	in	a	commitment	of	a	block	to
the	ledger	is	asynchronous	in	the	Fabric	scheme	of	things.	Three	of	the
operations	we	have	implemented	in	our	middleware	fall	into	that	category:

Channel	join
Chaincode	instantiation
Chaincode	invoke

In	our	description	of	these	operations,	we	stopped	at	the	point	where	a	request	is
successfully	sent	to	the	orderer.	But	to	complete	the	operation	loop,	any
application	that	uses	our	middleware	needs	to	know	the	final	result	of	the	request
to	drive	the	application	logic	forward.	Fortunately,	Fabric	provides	a
publish/subscribe	mechanism	for	the	communication	of	results	of	asynchronous
operations.	This	includes	events	for	the	commitment	of	a	block,	the	completion
of	a	transaction	(successfully	or	otherwise),	as	well	as	custom	events	that	can	be
defined	and	emitted	by	a	chaincode.	Here,	we	will	examine	block	and
transaction	events,	which	cover	the	operations	we	are	interested	in.

Fabric	offers	a	mechanism	for	event	subscription	in	the	SDK	through	an	EventHub
class,	with	the	relevant	subscription	methods	being	registerBlockEvent,
registerTxEvent,	and	registerChaincodeEvent,	respectively,	to	which	callback	functions
can	be	passed	for	actions	to	perform	at	the	middleware	layer	(or	higher)
whenever	an	event	is	available.

Let's	see	how	we	can	catch	the	event	of	a	successful	join	in	our	middleware
code.	Going	back	to	the	joinChannel	function	in	join-channel.js,	the	following	code

instantiates	an	EventHub	object	for	a	given	peer,	whose	configuration	is	loaded
from	config.json.	For	example,	to	subscribe	to	events	from	the	exporter
organization's	sole	peer,	the	URL	our	fabric-client	instance	will	listen	to	(under
the	covers)	is	grpcs://localhost:7053:

let	eh	=	client.newEventHub();

eh.setPeerAddr(

		ORGS[org][key].events,

		{

				pem:	Buffer.from(data).toString(),

				'ssl-target-name-override':	ORGS[org][key]['server-hostname']

		}

);

eh.connect();

eventhubs.push(eh);

The	listener,	or	callback,	for	each	block	event	is	defined	as	follows:

var	eventPromises	=	[];

eventhubs.forEach((eh)	=>	{

		let	txPromise	=	new	Promise((resolve,	reject)	=>	{

				let	handle	=	setTimeout(reject,	40000);

				eh.registerBlockEvent((block)	=>	{

						clearTimeout(handle);

						if(block.data.data.length	===	1)	{

								var	channel_header	=	block.data.data[0].payload.header.channel_header;

								if	(channel_header.channel_id	===	channel_name)	{

										console.log('The	new	channel	has	been	successfully	joined	on	peer	'+	

eh.getPeerAddr());

										resolve();

								}

								else	{

										console.log('The	new	channel	has	not	been	succesfully	joined');

										reject();

								}

						}

				});

		});

		eventPromises.push(txPromise);

});

Whenever	a	block	event	is	received,	the	code	matches	the	expected	channel
name	(tradechannel	in	our	scenario)	with	the	one	extracted	from	the	block.	(The
block	payloads	are	constructed	using	standard	schemas	available	in	the	Fabric
source	code,	in	the	protos	folder.	Understanding	and	playing	with	these	formats	is
left	as	an	exercise	to	the	reader.)	We	will	set	a	timeout	in	the	code	(40	seconds
here)	to	prevent	our	event	subscription	logic	from	waiting	indefinitely	and
holding	up	the	application.	Finally,	the	outcome	of	a	channel	join	is	made
contingent,	not	just	on	the	success	of	a	channel.joinChannel	call,	but	also	on	the
availability	of	block	events,	as	follows:

let	sendPromise	=	channel.joinChannel(request,	40000);

return	Promise.all([sendPromise].concat(eventPromises));

For	instantiation	and	invocation,	we	register	callbacks	not	for	blocks	but	for
specific	transactions,	which	are	identified	by	IDs	set	during	the	transaction
proposal	creation.	Code	for	the	subscription	can	be	found	in	the
instantiateChaincode	and	invokeChaincode	functions,	in	instantiate-chaincode.js	and
invoke-chaincode.js	respectively.	A	code	snippet	from	the	latter	illustrates	the	basic
working	of	transaction	event	handling:

eh.registerTxEvent(deployId.toString(),

		(tx,	code)	=>	{

				eh.unregisterTxEvent(deployId);

				if	(code	!==	'VALID')	{

						console.log('The	transaction	was	invalid,	code	=	'	+	code);

						reject();

				}	else	{

						console.log('The	transaction	has	been	committed	on	peer	'+	eh.getPeerAddr());

						resolve();

				}

		}

);

The	parameters	passed	to	the	callback	include	a	handle	to	the	transaction	and	a
status	code,	which	can	be	checked	to	see	whether	the	chaincode	invocation	result
was	successfully	committed	to	the	ledger.	Once	the	event	has	been	received,	the
event	listener	is	unregistered	to	free	up	system	resources	(our	code	may	also
listen	to	block	events	in	lieu	of	specific	transaction	events,	but	it	will	then	have
to	parse	the	block	payload	and	find	and	interpret	information	about	the
transaction	that	was	submitted).

Putting	it	all	together
The	sequence	of	steps	described	previously	can	be	run	in	one	go	through	a
suitably	coded	script.	As	mentioned	earlier,	createTradeApp.js	contains	such	a
script,	which	results	in	the	creation	of	tradechannel,	the	joining	of	the	four	peers	to
that	channel,	the	installation	of	the	trade_workflow	chaincode	on	all	four	peers,	and
its	subsequent	instantiation	on	the	channel,	which	finally	concludes	with	the
creation	of	a	trade	request	from	the	importer	to	the	exporter	and	a	follow-up
querying	the	request	status.	You	can	run	the	following	command	and	see	the
various	steps	being	conducted	on	your	console:

node	createTradeApp.js

Just	as	an	exercise,	and	to	test	out	both	the	middleware	library	functions	and	the
chaincode,	you	can	complete	the	trade	scenario	that	the	createTradeApp.js	script
began	by	starting	with	a	trade	request	acceptance	by	an	exporter	and	culminating
with	full	payment	made	to	the	exporter	by	the	importer	for	a	successfully
delivered	shipment.	To	view	this	in	operation,	run	the	following:

node	runTradeScenarioApp.js

User	application	–	exporting	the
service	and	API
The	exercise	in	creating	a	set	of	functions	for	our	middleware	lays	down	the
plumbing	for	a	user-facing	application	we	can	build	on	top.	Although	we	can
architect	the	application	in	different	ways,	the	set	of	capabilities	it	should	offer
will	remain	the	same.	Before	demonstrating	an	approach	to	building	an
application	for	a	blockchain	user,	we	will	discuss	the	salient	features	such	an
application	should	possess.

Applications
Referring	to	Figure	5.2:	Typical	three-layer	architecture	of	a	Hyperledger
Fabric	application,	and	our	discussion	in	the	"Application	Model	and	Architecture"
section	of	this	chapter,	different	users	of	a	Hyperledger	Fabric	application	may
need	different	and	distinct	applications.	Our	trade	scenario	is	an	example	of	this:
users	representing	trading	parties,	banks,	shippers,	and	governmental	authorities
may	need	different	things	from	our	application,	even	while	they	are	collectively
participating	in	the	trade	network	and	endorsing	smart	contract	operations.

There	are	common	operations	that	administrators	of	the	different	organizations
must	have	the	capability	to	perform.	This	includes	the	stages	from	the	creation	of
a	channel	up	to	the	instantiation	of	chaincode.	Therefore,	if	we	need	to	build
different	applications	for	each	network	participant,	we	should	expose	these
capabilities	to	every	instance	of	those	applications.	Once	we	get	to	the
application	itself,	which	consists	of	the	set	of	invoke	and	query	functions	offered
by	the	chaincode,	we	must	create	space	for	differentiation.	An	application
designed	for	the	trading	parties	and	their	banks	must	expose	trade	and	Letter	of
Credit	operations	to	the	users.	However,	there	is	no	need	to	expose	these
operations	to	a	carrier,	and	therefore	an	application	designed	for	the	latter	can
and	ought	to	limit	the	capabilities	offered	to	those	that	impact	the	carrier's	role,
such	as	the	functions	to	create	Bills	of	Lading	and	to	record	the	location	of	a
shipment.

Here,	for	simplicity,	we	will	amalgamate	all	the	applications	into	one	and
demonstrate	how	to	make	it	work.	Diversification	based	on	user	roles	and
requirements	is	left	as	an	exercise	for	the	reader.	Our	amalgamated	application
will	be	implemented	as	a	web	server,	loosely	connecting	the	smart	contract	and
the	middleware,	sounding	it	from	the	end	users.

User	and	session	management
The	design	of	any	service-oriented	application	requires	the	determination	of
users	who	will	be	allowed	to	access	the	application	and	perform	various	actions.
For	a	Hyperledger	Fabric	application,	special	consideration	ought	to	be	given	to
the	differentiation	between	user	classes.	Every	Fabric	network	has	a	set	of
privileged	users	(who	we	have	been	referring	to	as	administrators	of
organizations)	and	ordinary	members.	This	differentiation	of	roles	must	be
reflected	in	the	design	of	the	user-facing	application,	too.

The	application	must	have	an	authentication	layer	as	well	as	a	mechanism	for
session	management,	allowing	an	already-authenticated	user	to	exercise	the
application,	limited	by	their	role.	In	our	example	application,	we	will	use	JSON
Web	Tokens	(JWT)	for	this	purpose.

Designing	an	API
Before	building	our	application,	we	must	design	a	service	API	to	cover	the
capabilities	exposed	by	our	middleware.	We	will	design	our	API	to	be	RESTful,	as
follows:

1.	 POST/login:	Register	a	new	user	(administrative	or	ordinary)	or	log	in	as	an
existing	one

2.	 POST/channel/create:	Create	a	channel

	

3.	 POST/channel/join:	Join	the	network	peers	to	the	channel	created	in	this	user's
session

4.	 POST/chaincode/install:	Install	the	chaincode	on	the	peers
5.	 POST/chaincode/instantiate:	Instantiate	the	chaincode	on	the	channel
6.	 POST/chaincode/:fcn:	Invoke	the	chaincode	function	fcn	with	passed	arguments

(in	the	body);	examples	for	fcn	are	requestTrade,	acceptLC,	and	so	on
7.	 GET/chaincode/:fcn:	Query	the	chaincode	function	fcn	with	passed	arguments	(in

the	body);	examples	for	fcn	are	getTradeStatus,	getLCStatus,	and	so	on

Collectively,	these	API	functions	cover	the	transaction	stages	in	Figure	5.3:	The
stages	in	the	creation	and	operation	of	a	blockchain	application.

Creating	and	launching	a	service
We	will	implement	an	express	(https://expressjs.com/)	web	application	in	Node.js
to	expose	the	preceding	API.	The	code	lies	in	the	application	folder	in	our
repository,	with	the	source	code	in	app.js	and	the	dependencies	defined	in
package.json.	As	a	prerequisite	to	running	the	web	application,	the	dependencies
must	be	installed	either	by	running	npm	install	or	make	(see	Chapter	8,	Agility	In	A
blockchain	network)	within	that	folder.

The	following	code	snippet	shows	how	to	instantiate	and	run	the	express	server:

var	express	=	require('express');

var	bodyParser	=	require('body-parser');

var	app	=	express();

var	port	=	process.env.PORT	||	4000;

app.options('*',	cors());

app.use(cors());

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({

		extended:	false

}));

var	server	=	http.createServer(app).listen(port,	function()	{});

To	summarize,	a	web	server	is	launched	to	listen	for	HTTP	requests	on	port	4000.
Middleware	is	configured	to	enable	CORS,	automatically	parsing	both	JSON
payloads	and	forming	data	in	POST	requests.

Our	web	server	listens	to	requests	over	an	insecure	HTTP.	In	a	production	application,	we
would	start	an	HTTPS	server	for	secure,	confidential	communication	with	clients.

Now,	let's	see	how	to	configure	the	various	express	routes	to	implement	our
service	API	functions.

https://expressjs.com/

User	and	session	management
Before	performing	a	network	(channel)	or	chaincode	operation,	a	user	must
establish	an	authenticated	session.	We	will	implement	the	/login	API	function	as
follows:

1.	 Create	a	JWT	token	for	a	user	with	an	expiration	time	of	60	seconds
2.	 Register	or	log	the	user	in
3.	 If	successful,	return	the	token	to	the	client

The	server	expects	the	name	of	a	user	and	an	organization	name	for	registration
or	login	to	be	provided	as	form	data	in	the	request	body.	An	administrative	user
is	simply	identified	by	the	admin	username.	The	request	body	format	is:

username=<username>&orgName=<orgname>[&password=<password>]

A	password	must	be	supplied,	but	only	if	the	<username>	is	admin.	In	that	case,	the
middleware	will	simply	check	whether	the	supplied	password	matches	the	one
that	was	used	to	start	the	fabric-ca-server	for	the	organization's	MSP.	As
mentioned	earlier	in	this	chapter,	our	MSP	administrator	passwords	were	set	to
the	default	adminpw.

This	is	a	naïve	implementation,	but	as	web	application	security	is	not	the	focus	of	this	tutorial,
this	will	suffice	to	show	how	a	server	and	frontend	can	be	implemented	over	a	smart	contract
and	middleware.

The	code	for	JWT	token	creation	and	user	registration/login	can	be	found	in	the
following	express	route	configured	in	app.js:

app.post('/login',	async	function(req,	res)	{	...	});

The	reader	may	experiment	with	other	mechanisms	of	session	management,	such
as	session	cookies,	in	lieu	of	JWT	tokens.

Our	web	application	can	now	be	tested.	First,	bring	up	the	Fabric	network	using
docker-compose	(or	trade.sh),	as	shown	earlier	in	this	chapter.

If	you	created	fresh	cryptographic	keys	and	certificates	for	the	organizations	using	cryptogen
(or	the	trade.sh	script),	you	MUST	clear	the	temporary	folder	used	by	the	middleware	to	save

world	state	and	user	info,	otherwise	you	may	see	errors	if	you	try	to	register	users	with	IDs
that	were	used	in	a	previous	run	of	your	application.	For	example:	if	the	temporary	folder
is	network/client-certs	on	your	machine,	you	can	simply	run	rm	-rf	client-certs	from	the	network
folder	to	clear	the	contents.

In	a	different	terminal	window,	start	the	web	application	by	running	the
following	command:

node	app.js

In	a	third	terminal	window,	send	a	request	to	the	web	server	using	the	curl
command	to	create	an	ordinary	user	named	Jim	in	the	importerorg	organization
(this	is	the	organization	name	specified	in	middleware/config.json):

curl	-s	-X	POST	http://localhost:4000/login	-H	"content-type:	application/x-www-form-

urlencoded"	-d	'username=Jim&orgName=importerorg'

You	should	see	an	output	like	the	following:

{"token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MjUwMDU4NTQsInVzZXJuYW1lIjoiSmltIiwib3JnTmFtZSI6ImltcG9ydGVyb3JnIiwiaWF0IjoxNTI1MDAxNzE0fQ.yDX1PyKnpQAFC0mbo1uT1Vxgig0gXN9WNCwgp-

1vj2g","success":true,"secret":"LNHaVEXHuwUf","message":"Registration	successful"}

In	the	middleware,	the	function	that	gets	executed	here	is	getUserMember	in
clientUtils.js,	which	was	discussed	earlier	in	this	chapter.

To	create	an	administrative	user	in	the	same	organization,	run:

curl	-s	-X	POST	http://localhost:4000/login	-H	"content-type:	application/x-www-form-

urlencoded"	-d	'username=admin&orgName=importerorg&password=adminpw'

You	should	see	an	output	as	follows	(the	admin	user	was	already	registered,	so
this	ended	up	being	a	login	call):

{"token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MjUwMDU4OTEsInVzZXJuYW1lIjoiYWRtaW4iLCJvcmdOYW1lIjoiaW1wb3J0ZXJvcmciLCJpYXQiOjE1MjUwMDE3NTF9.BYIEBO_MZzQa52_LW2AKVhLVag9OpSiZsI3cYHI9_oA","success":true,"message":"Login

	successful"}

In	the	middleware,	the	function	that	gets	executed	here	is	getMember	in
clientUtils.js.

Network	administration
As	you	can	see	in	app.js,	the	API	functions	from	channel	creation	to	chaincode
instantiation	are	implemented	as	express	routes:

app.post('/channel/create',	async	function(req,	res)	{	...	});

app.post('/channel/join',	async	function(req,	res)	{	...	});

app.post('/chaincode/install',	async	function(req,	res)	{	...	});

app.post('/chaincode/instantiate',	async	function(req,	res)	{	...	});

To	exercise	these	routes,	the	end	user	must	log	in	as	an	administrator	and	use	the
returned	token.	Taking	the	output	from	the	previous	call,	we	can	request	channel
creation	as	follows:

curl	-s	-X	POST	http://localhost:4000/channel/create	-H	"authorization:	Bearer	

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MjUwMDU4OTEsInVzZXJuYW1lIjoiYWRtaW4iLCJvcmdOYW1lIjoiaW1wb3J0ZXJvcmciLCJpYXQiOjE1MjUwMDE3NTF9.BYIEBO_MZzQa52_LW2AKVhLVag9OpSiZsI3cYHI9_oA"

Note	that	the	format	for	the	authorization	header	is	Bearer	<JWT	token	value>.	The
web	server	implicitly	assumes	that	the	channel	name	is	tradechannel,	which	is	set
in	middleware/constants.js.	(You	may	augment	the	server	API	to	accept	a	channel
name	in	the	request	body	if	you	wish.)	The	output	ought	to	be	as	follows	if
everything	goes	well:

{"success":true,"message":"Channel	created"}

Similar	queries	can	be	run	by	an	administrator	for	channel	join,	chaincode
installation,	and	chaincode	instantiation.	As	an	example,	the	instantiation	API
endpoint	expects	the	chaincode	path,	chaincode	version,	and	a	list	of	arguments
for	the	chaincode	as	follows:

curl	-s	-X	POST	http://localhost:4000/chaincode/instantiate	-H	"authorization:	Bearer	

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MjUwMDU4OTEsInVzZXJuYW1lIjoiYWRtaW4iLCJvcmdOYW1lIjoiaW1wb3J0ZXJvcmciLCJpYXQiOjE1MjUwMDE3NTF9.BYIEBO_MZzQa52_LW2AKVhLVag9OpSiZsI3cYHI9_oA"

	-H	"content-type:	application/json"	-d	'{	"ccpath":	"github.com/trade_workflow",	

"ccversion":	"v0",	"args":	["LumberInc",	"LumberBank",	"100000",	"WoodenToys",	

"ToyBank",	"200000",	"UniversalFreight",	"ForestryDepartment"]	}'

The	output,	if	everything	goes	well,	will	be:

{"success":true,"message":"Chaincode	instantiated"}

In	the	implementation	of	each	of	these	routes,	a	check	is	made	to	ensure	that	the
user	(identified	by	the	JWT	token)	is	an	administrative	user,	as	follows:

if	(req.username	!==	'admin')	{

		res.statusCode	=	403;

		res.send('Not	an	admin	user:	'	+	req.username);

		return;

}

If	we	were	to	use	the	token	for	the	user	registered	as	Jim,	the	web	server	would
return	a	403	error	code	to	the	client.

Exercising	the	application
Once	the	chaincode	has	been	initialized	by	an	administrative	user,	our
application	is	open	for	business.	Now,	any	ordinary	user	(such	as	Jim	in	the
importer's	organization)	may	request	a	chaincode	invocation	or	query.	For
example,	a	trade	request	can	be	made	as	follows:

curl	-s	-X	POST	http://localhost:4000/chaincode/requestTrade	-H	"authorization:	Bearer	

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MjUwMDU4NTQsInVzZXJuYW1lIjoiSmltIiwib3JnTmFtZSI6ImltcG9ydGVyb3JnIiwiaWF0IjoxNTI1MDAxNzE0fQ.yDX1PyKnpQAFC0mbo1uT1Vxgig0gXN9WNCwgp-

1vj2g"	-H	"content-type:	application/json"	-d	'{	"ccversion":	"v0",	"args":	["2ks89j9",	

"50000","Wood	for	Toys"]	}'

Note	that	the	chaincode	version	must	be	supplied	in	the	request	body.	The
output,	if	all	goes	well,	will	be:

{"success":true,"message":"Chaincode	invoked"}

Subsequently,	the	status	of	the	trade	can	be	queried	(again	by	Jim):

curl	-s	-X	GET	http://localhost:4000/chaincode/getTradeStatus	-H	"authorization:	Bearer	

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1MjUwMDU4NTQsInVzZXJuYW1lIjoiSmltIiwib3JnTmFtZSI6ImltcG9ydGVyb3JnIiwiaWF0IjoxNTI1MDAxNzE0fQ.yDX1PyKnpQAFC0mbo1uT1Vxgig0gXN9WNCwgp-

1vj2g"	-H	"content-type:	application/json"	-d	'{	"ccversion":	"v0",	"args":	["2ks89j9"]	

}'

Now,	the	output	ought	to	contain	the	chaincode	response:

{"success":true,"message":"{\"Status\":\"REQUESTED\"}"}

User/client	interaction	modes
Although	running	curl	commands	is	sufficient	to	test	our	web	application,	the
proper	way	to	expose	the	application	to	the	user	would	be	through	one	or	more
web	pages,	with	widgets	for	the	user	to	trigger	those	commands.

As	we	saw	in	the	middleware	implementation	section,	various	operations,
including	chaincode	invocations,	are	asynchronous.	In	our	implementation,	we
masked	this	asynchronous	behavior	by	making	the	wrapper	function	return	to	the
caller,	but	only	when	the	request	had	been	successfully	sent	to	the	orderer	and
the	events	subscribed	for	had	been	received	and	validated.	We	can	also	choose	to
expose	this	asynchronous	behavior	to	the	web	application	client.	Using	Web
Sockets	(https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API),	the	contents
of	a	web	interface	presented	to	the	end	user	may	be	dynamically	updated
whenever	the	event	notification	arrives	at	the	callback	registered	with	the	event
hub.

Designing	good	web	interfaces	is	beyond	the	scope	of	this	book,	and	it	is	left	to
the	reader	to	leverage	other	sources	of	knowledge	to	build	ones	suitable	for	their
applications.

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

Testing	the	Middleware	and
Application
We	have	shown	how	to	exercise	the	Node	JS-based	middleware	and	application
capabilities	using	sample	scripts	and	curl	commands.	By	observing	the	console
output,	you	can	find	out	if	the	application	works	as	expected.	For	a	production
application,	you	will	need	a	more	robust	and	maintainable	testing	methodology
that	can	evaluate	correctness	of	the	library	functions	and	API	endpoints	on	an
ongoing	basis.	Both	unit	tests	and	integration	tests	should	be	part	of	your
evaluation	process.	A	hands-on	demonstration	of	such	testing	is	beyond	the
scope	of	this	chapter,	and	writing	unit	and	integration	tests	is	left	as	an	exercise
to	the	reader.	Mocha,	which	is	a	feature-rich	JavaScript	framework	for
asynchronous	testing(https://mochajs.org/),	can	be	used	for	this	purpose.

https://mochajs.org/

Integration	with	existing	systems	and
processes
When	discussing	end-to-end	solutions	with	customers,	we	often	explain	that
blockchain-related	components	represent	a	very	small	percentage	of	the	overall
footprint.	This	is	still	a	very	important	set	of	components,	but	nonetheless	they
represent	a	small	footprint.

This	section	will	focus	on	the	touch	point	between	our	traditional	systems	and
the	Hyperledger	Fabric	and	Composer	API.

We	will	explore	the	various	patterns	of	integration	we	have	leveraged	and	see
how	some	of	the	non-functional	requirements	can	influence	the	integration
deployment.	Finally,	we	will	explore	some	additional	considerations	that
integrators	will	need	to	keep	in	mind	when	designing	their	integration	layer.

In	short,	in	this	section,	you	will:

Understand	the	design	consideration	of	the	integration	layer
Review	the	integration	design	patterns
Explore	the	impact	of	non-functional	requirements	on	the	integration

Design	considerations
By	now,	you	have	experience	with	Fabric	SDK	and	by	the	end	of	the	Chapter	7,	A
Business	Network	Example,	you	will	have	experienced	using	the	the	Composer	REST
gateway.	While	those	are	certainly	the	main	tools	of	the	trade	when	it	comes	to
integration,	they	are	part	of	an	ecosystem,	and	there	needs	to	be	an	alignment	of
the	business	processes	of	the	enterprise	to	make	sure	the	integration	makes
sense.

As	per	the	design	considerations,	we	will	look	at	the	following	aspects:

Impact	of	decentralization
Process	alignment
Message	affinity
Service	discovery
Identity	mapping

Decentralization
Many	attempts	have	been	made	to	standardize	IT	functions	and	capabilities,	but
the	reality	is	that	no	two	organizations	have	the	same	IT	landscape.	Even	for
those	who	have	selected	the	same	ERP	vendor,	the	systems	will	have	been
customized	to	meet	the	organization	processes	and	needs.

This	means	that	when	planning	your	integration	design,	you	should	keep	in	mind
that	each	organization	may	have	their	own	way	of	invoking	smart	contracts	and
may	not	have	the	same	IT	capabilities	or	policies.

As	an	example,	exposing	events	through	Web	Socket	may	make	sense	for	an
organization	who	is	familiar	with	cloud-based	technologies,	but	other
organizations	may	not	have	the	skills,	or	their	IT	security	policies	may	not	allow
them	to	use	the	protocol.

While	it	may	seem	surprising	to	some,	keep	in	mind	that	a	network	can	be	a	mix
of	Fortune	500	organizations	and	start-ups.	Consider	the	supply-chain	industry
for	a	moment;	you	will	find	some	trucking	company	with	little	to	no	IT
infrastructure,	all	the	way	to	industry	behemoths.	Clearly,	one	size	may	not	fit
all.

Having	said	that,	from	a	network	perspective,	you	should	consider	the	degree	of
support	the	network	wants	to	provide	to	joining	organizations.	There	are	two
possible	approaches:

	The	network	provides	an	integration	asset:	This	can	take	the	form	of	a
gateway	that	each	participant	deploys	in	their	own	infrastructure.	The
gateway	is	standard	for	everyone	and	manages	the	invocation	of	the	smart
contracts	in	a	consistent	manner.
This	can	provide	the	benefit	of	accelerating	the	on-boarding	process,	but
requires	consideration	about	who	owns,	manages,	and	supports	this	IT
component.	Furthermore,	some	organizations	may	not	want	to	deploy	this
piece	of	infrastructure	due	to	trust	issues.
Each	participant	builds	their	own	integration	layer:	The	obvious
downside	of	this	approach	is	the	recreation	of	the	wheel	by	all	participants,

but	it	reduces	the	potential	support	issues	created	by	deploying	a	common
component	in	every	organization.
This	may	also	be	the	preferred	approach	for	use	cases	requiring	deep
system	integration	to	achieve	the	benefit	of	process	optimizations.

Process	alignment
The	integration	layer	will	have	to	deal	with	two	different	viewpoints:

Organization	IT	system	and	business	process	viewpoint:	An
organization	business	process	may	be	hosted	in	an	ERP	such	as	SAP.	In
such	a	situation,	when	a	specific	business	event	warrants	the	invocation	of	a
smart	contract,	this	may	be	issued	through	a	Business	API	(BAPI)	call
from	the	SAP	system.	The	API	call	from	the	ERP	may	contain	a	variety	of
data	structures,	some	of	which	will	be	completely	irrelevant	to	the
blockchain	network.
Smart	contract	viewpoint:	This	viewpoint	has	the	particularity	of	having	a
data	representation	that	is	application	agnostic.	This	means	that	all
participants	of	the	network	will	understand	the	nature	of	the	data	being
processed.

It	is	up	to	the	integration	layer	to	reconcile	the	two	and	ensure	that	the	proper
semantic	of	the	transaction	is	maintained	in	both	systems.	This	may	imply:

Mapping:	Moving	data	from	one	field	name	to	the	another
Transformation:	Aggregating,	splitting,	or	computing	a	new	value	based
on	input
Cross-referencing:	Leveraging	a	reference	table	to	map	application-
specific	codes	to	values	recognized	by	the	network

The	point	here	is	that	even	if	your	network	agrees	to	use	the	Hyperledger
Composer	REST	gateway	presented	in	Chapter	7,	A	Business	Network	Example,
there	is	still	work	that	needs	to	be	done	by	each	participant	to	ensure	that	the
integration	fits	into	the	overall	business	processes	of	the	organization.

Message	affinity
While	this	is	not	an	issue	often	discussed,	ignoring	it	can	lead	to	serious	issues
that	will	typically	surface	during	integration	or	performance	testing.

We	refer	to	message	affinity	as	a	situation	that	occurs	when	a	system	issues	a
series	of	inter-dependent	transactions,	which	are	issued	in	a	short	period	of	time.
Because	each	transaction	is	issued	separately,	they	are	subject	to	be	processed	in
a	different	order	than	when	they	are	issued	by	the	client.

The	result	may	be	unpredictable,	as	the	following	example	shows.	To	make	it
concrete,	let's	look	at	an	Order	process	that	would	issue	three	separate
transactions,	as	shown	in	the	following	diagram:

Figure	5.4:	Processing	service	requests	in	order

Because	the	Service	Provider	is	multi-threaded,	the	order	of	processing	can	vary
depending	on	the	load	at	the	time.	A	potential	result	is	illustrated	in	the
following	diagram:

Figure	5.5:	Potential	service	processing	result

The	first	item	being	processed	out	of	order	would	be	rejected	because	the	order
object	hasn't	been	created	yet.	However,	the	two	subsequent	objects	would
succeed	and	leave	the	system	in	a	state	where	the	order	is	recorded	as	having	a
single	item	instead	of	two.

The	challenge	with	this	situation	is	that	it	is	hard	to	troubleshoot.	An	unaware
developer	may	not	be	able	to	reproduce	this	behavior	on	his/her	development

platform.

Now,	you	may	be	wondering,	how	does	that	relate	to	blockchain	and
Hyperledger	Fabric?	Considering	that	Fabric	transactions	are	asynchronously
processed	and	that	they	are	validated	against	every	world	state,	this	situation	can
arise.	The	client	will	issue	the	transaction	and	may	asynchronously	receive	a
message	saying	that	the	transaction	was	invalid	because	it	did	not	correspond	to
the	world	state.

The	moral	of	the	story	here	is	that	when	designing	an	API,	make	sure	that	they
are	at	a	granularity	level	that	completely	describes	a	business	event.	Too	many
fine-grained	transactions	only	leads	to	message	affinity,	increased	latency,	and
the	potential	for	issues,	as	described	here.

Service	discovery
In	the	context	of	the	integration	to	Hyperledger	Fabric	and	Composer,	the
concept	of	service	discovery	is	focussed	on	documenting	and	exposing	the
artifacts	from	Fabric:	CA,	peers,	and	orderers	to	the	calling	application.	

As	we	now	have	experienced,	in	order	for	the	application	to	get	a	transaction
endorsed	and	added	to	the	ledger,	it	needs	to	be	able	to	interact	with	numerous
components	of	these	types.	Having	a	way	to	maintain	this	information	as	a
service	configuration	element	will	enable	teams	to	quickly	adapt	to	the	evolving
nature	of	the	network.

Currently,	when	developing	client	applications	using	the	Fabric	SDK,	the
developer	is	responsible	for	managing	and	applying	this	service	configuration.

Part	of	the	roadmap	of	Hyperledger	Fabric	is	the	intent	to	facilitate	this
configuration.

One	of	the	benefits	of	relying	on	a	component	such	as	the		Composer	REST	gateway
is	that	service	discovery	is	provided	by	the	gateway.	Concretely,	as	you	will	soon
discover,	it	provides	the	concept	of	a	business	card	which	contains	both	the
identity	information	along	with	a		connection	profile,	which	has	the	list	of
Hyperledger	Fabric	services	that	can	be	used	to	execute	transactions.

Identity	mapping
Identity	mapping	is	the	process	of	converting	the	identity	of	an	individual	or	an
organization	to	an	identity	that	is	recognized	on	the	network.

When	looking	at	the	solution	from	a	business	network	perspective,	what	is	the
granularity	of	the	identity	that	needs	to	be	recognized?	Will	other	organizations
care	whether	Bob	or	Ann	from	ACME	issued	the	transaction?	In	most	cases,	the
answer	will	be	no.	Knowing	that	the	transaction	was	issued	by	ACME	will	be
sufficient.

Why	is	that,	you	may	wonder.	It	is	directly	related	to	the	concept	of	trust.
Remember	the	concepts	presented	in	Chapter	1,	Blockchain	–	Enterprise	and
Industry	Perspective;	blockchain	solves	the	problem	of	time	and	trust.
Understanding	where	the	trust	issues	come	from	helps	us	rationalize	what
identities	should	be	used	to	transact	on	the	network.	In	most	cases,	our
experience	has	been	that	trust	issues	occur	between	organizations.

If	you	think	about	a	use	case	where	a	bank	customer	transacts	through	their	bank
portal,	the	customer	will	not	care	about	the	backend	systems;	they	trust	their
bank's	security	system.

Having	said	that,	there	are	situations	where	an	identity	will	need	to	be	mapped:

Business	partners	transacting	through	the	integration	layer	of	the
organization
Different	departments	with	varying	levels	of	privilege
Users	with	different	roles	that	drive	different	access	privileges

In	this	case,	the	integration	layer	will	need	to	convert	the	inbound	credentials
(API	Key,	User	ID	and	Password,	JTW	token,	and	so	on)	into	a	Hyperledger
Fabric	identity.

When	working	with	the	Hyperledger	Composer	REST	gateway,	you	can	configure	it
to	support	multiple	users.	The	server	leverages	the	node	passport	framework	to
manage	this	authentication.	This	provides	the	flexibility	of	supporting	different

models	(for	example,	user	ID/password,	JWT,	and	OAUTH).

Once	the	client	is	authenticated	to	the	server,	there	is	an	additional	step	that
consists	of	loading	the	Hyperledger	Composer	business	card	into	the	server's
user	repository.	There	needs	to	be	implicit	trust	between	the	client	and	the	server,
as	the	business	card	contains	the	private	key.

Integration	design	pattern
We	will	now	look	at	some	of	the	viable	integration	patterns	we	have	seen	in	the
industry.	The	list	is	by	no	means	exhaustive,	and	given	that	we	are	still	in	the
early	days	of	the	Hyperledger	Fabric	and	Composer	solutions,	we	expect	that
new	patterns	will	emerge	as	people	and	organizations	become	more	comfortable
with	the	technology.

Enterprise	system	integration
In	this	category,	we	consider	any	organization's	pre-existing	systems	that	predate
the	joining	of	the	network.	As	such,	these	systems	have	their	own	concepts	and
paradigms,	and	we	will	require	a	form	of	abstraction	to	reconcile	the	two	worlds.

Integrating	with	an	existing	system	of
record
Following	is	a	diagram	to	illustrate	the	blockchain	network	to	an	existing	system
of	record:

Figure	5.6:	Integrating	the	blockchain	network	to	an	existing	system	of	record

Most	large	enterprises	looking	at	joining	with	a	business	network	will	eventually
aim	at	integrating	their	system	of	record	to	make	sure	that	they	benefit	from	the
real-time	transparent	distribution	of	transactions.	In	these	circumstances,	the
process	alignment	we	previously	mentioned	will	be	tremendously	important.

As	depicted	in	the	preceding	diagram,	the	approach	will	consist	of	leveraging	an
adaptor	pattern	to	act	as	a	data	mapper	between	the	two	worlds.	The	adaptor	will
adopt	the	enterprise	system	application	protocol	and	data	structure	to	receive
transaction	requests.	Optionally,	it	can	also	leverage	existing	foundations	such	as
messaging	services	to	propagate	ledger	events.

The	important	thing	to	note	here	is	that	this	type	of	integration	will	be	specific	to
an	organization,	and	very	little	reuse	will	be	possible.

As	a	variant	of	this	pattern,	some	organizations	will	break	the	adaptor	into	two
parts:

REST	gateway:	Exposing	a	REST	interface	aligned	with	the	Fabric	smart

contract
Integration	bus:	Mapping	the	fields	and	connecting	the	enterprise	systems

While	in	this	variant	reuse	is	higher,	the	same	considerations	only	get	moved	one
layer	down.

Integrating	with	an	operational	data
store
Here	is	a	diagram	that	illustrates	integrating	the	blockchain	network	to	an
operational	data	store:

Figure	5.7:	Integrating	the	blockchain	network	to	an	operational	data	store

Oftentimes,	organizations	are	looking	at	ways	of	running	analytics	on	the
information	from	their	ledgers.	However,	issuing	multiple/large	queries	against
the	organization's	peers	will	only	impact	the	online	performance	of	the	system.
Generally,	the	recognized	approach	in	enterprise	system	design	is	to	move	the
data	to	an	operational	data	store.	The	data	can	then	be	easily	queried.	Additional
views	on	the	data	can	be	created	by	enriching	the	data	using	different	data
sources.

In	this	pattern,	the	event	listener	subscribes	to	the	Fabric	organization	events.	As
such,	it	can	receive	transactions	from	all	channels	the	organization	is	entitled	to.
If	the	preservation	of	the	data's	integrity	is	important,	the	event	listener	can
calculate	a	hash	of	every	record	and	store	them	alongside	the	records.

You	will	notice	that	the	pattern	also	accounts	for	a	syncAll	function	that	would
allow	the	event	listener	to	re-synchronize	the	data	store	with	the	latest	view	of
the	world	state.	Keep	in	mind	that	the	implementation	of	this	syncAll	function	will
need	to	be	done	carefully	and	will	most	likely	require	that	the	function	supports
the	pagination	of	the	resultsets.

Microservice	and	event-driven
architecture
The	following	diagram	illlustrates	microservice	and	event-driven	architecture	for
a	blockchain	application:

Figure	5.8:	Microservice	and	event-driven	architecture	for	a	blockchain	application

We've	labeled	this	pattern	as	microservice	and	event-driven	because	this	is	the
pattern	most	often	seen	for	those	types	of	architectures.	However,	the
particularity	of	this	pattern	comes	from	the	gateway.	Such	a	system	will	not
perform	any	data	mapping;	it	will	leverage	a	common	communication	protocol
(HTTP)	and	data	format	(typically	JSON,	but	it	could	be	XML).	There	is	also	an
expectation	that	the	services	will	already	be	designed	to	understand	the
semantics	of	the	data	being	transacted.	Events	are	also	propagated	through	the
same	protocol	and	data	format.

Again,	microservice	applications	tend	to	be	newer	applications,	and	they	benefit
from	a	more	fine-grained	interface.	As	such,	they	tend	to	evolve	more	quickly
and	be	in	a	position	to	adapt	and	adhere	to	the	transactions	from	the	network.
Similarly,	event-driven	applications	will	benefit	from	their	low	coupling	to	the
other	components	of	the	system,	and	so	are	good	candidates	for	this	pattern.

Considering	reliability,	availability,
and	serviceability
The	failure	of	software	or	hardware	components	is	a	fact	of	life	for	any	industrial
application,	so	you	must	design	your	application	to	be	robust	to	failures	and
minimize	the	probability	of	downtime.	We	will	discuss	three	key	guidelines	that
are	widely	used	in	the	industry	to	build	and	maintain	systems,	and	briefly
examine	how	they	apply	to	an	application	built	using	Fabric	or	Composer	tools.

Reliability
A	reliable	system	is	one	that	ensures	correct	operation	in	the	face	of	failure,	with
high	probability.	This	entails	the	following	things:

Continuous	self-monitoring	of	the	system
Detection	of	failure	or	corruption	in	a	component
Fixing	the	problem	and/or	failing	over	to	a	working	component

Although	various	practices	have	evolved	in	the	industry	to	ensure	reliability,
redundancy	and	failover	are	commonly	(or	even	universally)	used.

In	the	context	of	a	Fabric	application	of	the	kind	we	built	in	Section	I,	this	has
certain	implications.	Recall	that	Fabric	has	many	different	components	that	must
work	in	concert	(though	in	a	loosely-coupled	manner)	to	ensure	successful
operation.	The	ordering	service	is	one	such	key	component	that,	if	it	were	to	fail,
would	completely	stall	the	transaction	pipeline.	Therefore,	when	building	a
production	version	of,	say,	our	trade	application,	you	must	ensure	that	the
orderer	has	enough	redundancy	built	in.	In	practice,	if	your	orderer	is	a	Kafka
cluster,	this	means	ensuring	that	there	are	enough	Kafka	nodes	(brokers)	to	take
up	the	slack	should	one	or	more	fail.

Similarly,	the	reliability	of	peers	for	endorsement	and	commitment	is	key	to
ensuring	transaction	integrity.	Although	blockchains,	being	shared	replicated
ledgers,	are	designed	to	be	somewhat	robust	to	peer	failures,	their	vulnerabilities
may	vary	depending	on	the	application.	If	an	endorsing	peer	fails,	and	if	its
signature	is	necessary	to	satisfy	the	transaction	endorsement	policy,	transaction
requests	cannot	be	created.	If	an	endorsing	peer	misbehaves,	and	produces
incorrect	execution	results,	the	transaction	will	fail	to	get	committed.	In	either
case,	the	throughput	of	the	system	will	reduce	or	fall	to	zero.	To	prevent	this
from	happening,	you	should	ensure	that	there	is	adequate	redundancy	built	into
the	set	of	peers	within	each	organization,	especially	the	ones	that	are	key	to
satisfying	an	endorsement	policy.	The	following	diagram	illustrates	a	possible
mechanism	whereby	transaction	proposals	are	made	to	multiple	peers,	and
absent	or	incorrect	responses	are	discarded	using	a	majority	rule:

Figure	5.9	Redundant	peers	for	reliable	transaction	endorsement

The	level	of	reliability	one	gets	from	a	system	depends	on	the	amount	of
resources	devoted	to	monitoring	and	failover.	For	example,	five	peers	in	the
preceding	diagram	are	sufficient	to	counter	two	peer	failures,	but	this	now
requires	four	more	peers	in	the	organization	than	what	we	used	in	our	example
network.	To	determine	and	ensure	that	your	network	yields	the	expected	level	of
reliability,	you	will	need	to	run	integration	tests	on	your	complete	system	over	a
period	of	time.

Availability
The	availability	criterion	is	closely	related	to	reliability,	but	it	is	more	about
ensuring	system	uptime	with	high	probability,	or	as	a	corollary,	minimizing	the
probability	of	system	downtime.	As	with	reliability,	detection	of	failed	nodes	and
ensuring	adequate	failover	is	the	key	to	ensuring	that	your	application	will
remain	operational,	even	when	one	or	more	components	fails.	Determination	of
the	desired	availability	level,	allocating	an	adequate	number	of	resources	in	the
form	of	redundant	and	self-correcting	components,	and	testing	in	a	production
environment	are	necessary	to	ensure	that	you	get	the	desired	performance	from
your	application.

Serviceability
Serviceability	or	maintainability	is	the	ease	with	which	you	can	replace	or
upgrade	parts	of	your	system	without	impacting	the	system	as	a	whole.

Consider	a	situation	where	you	must	upgrade	the	operating	system	on	one	or
more	of	your	ordering	service	nodes,	or	if	you	need	to	replace	a	faulty	peer
within	an	organization.	As	with	reliability	or	availability,	having	redundant	(or
parallel)	resources	to	which	application	operations	can	be	switched	seamlessly	is
the	way	to	handle	this	in	an	industrial-scale	system.	So-called	Blue-Green
deployment	is	one	of	the	popular	mechanisms	used	for	this	purpose.	In	a
nutshell,	you	have	two	parallel	environments	(let's	say,	for	the	ordering	service),
one	called	Blue	and	one	called	Green,	where	the	Blue	environment	is	receiving
live	traffic.	You	can	upgrade	the	operating	systems	on	the	Green	machines,	test
them	adequately,	and	then	switch	the	traffic	from	Blue	to	Green.	Now,	while
Green	is	serving	requests,	you	can	upgrade	Blue	in	the	same	manner.

In	a	blockchain	application	with	loosely	coupled	components,	it	is	advisable	to
have	Blue	and	Green	environments	for	each	of	the	components	(orderers,	peers,
and	MSPs)	and	carry	out	the	upgrades	and	testing	in	stages,	or	one	component
cluster	at	a	time,	to	minimize	the	chances	of	a	mishap.

Summary
Building	a	complete	blockchain	application	is	an	ambitious	and	challenging
project,	not	just	because	of	the	range	of	skills	it	requires—systems,	networking,
security,	and	web	application	development,	to	name	a	few—but	because	it
requires	concerted	development,	testing,	and	deployment	by	multiple
organizations	spanning	multiple	security	domains.

In	this	chapter,	we	began	with	a	simple	smart	contract	and	ended	with	a	four-
peer	blockchain	network	that	was	ready	to	drive	trade	scenarios	and	store
records	in	a	tamper-resistant,	shared,	replicated	ledger.	In	the	process,	we	learned
how	to	design	an	organization	structure	and	configure	a	Fabric	network.	We
learned	how	to	build	a	channel,	or	an	instance	of	a	Fabric	blockchain,	get	peers
in	a	network	to	join	the	channel,	and	install	and	instantiate	a	smart	contract	on
that	channel,	using	the	Fabric	SDK.	We	learned	how	to	expose	the	capabilities	of
our	network	and	smart	contract	to	end	users	through	web	applications,	exposing
service	APIs.	We	also	learned	how	a	Hyperledger	Fabric	transaction	pipeline
works,	and	how	the	asynchronous	nature	of	block	commit	operations	must	be
factored	into	the	implementation	of	the	end-to-end	application.

In	the	latter	part	of	the	chapter,	we	learned	about	various	design	patterns	and	best
practices	that	can	be	used	to	build	industry-scale	blockchain	applications.	We
also	learned	about	the	considerations	to	keep	in	mind	while	integrating	these
applications	with	existing	systems	and	processes.	Finally,	we	explored	the
performance	aspects	of	running	operational	Fabric	network	and	learned	about
the	CAP	theorem	and	how	Fabric	achieves	data	consistency	in	distributed
environment.	

The	Hyperledger	platforms	and	tools	will,	no	doubt,	evolve	over	time	to	serve
industry	and	developer	needs,	but	the	architecture	and	methodology	we
described	in	our	application-building	exercise,	as	well	as	the	design	and
integration	patterns,	should	continue	to	serve	as	an	educational	guide	in	the	long
term.

Our	journey	so	far	has	taken	us	to	the	foundation	of	the	Hyperledger	Fabric

framework.	We	have	worked	with	chaincode	and	integrated	an	application	using
the	Fabric	SDK	API.	These	are	essential	skills.

In	the	next	two	chapters,	we	will	now	explore	a	different	approach	to	modeling
and	implementing	a	business	network.

Business	Networks
This	chapter	introduces	and	explores	a	new	concept—a	business	network.	By
understanding	what	business	networks	are	and	how	they	function,	you'll	be	able
to	understand	how	blockchain	technology	can	radically	improve	them.	A
blockchain,	and	in	particular	a	Hyperledger	Fabric	blockchain,	provides
significant	benefits	for	business	networks	because	it	radically	simplifies	the
information	and	processes	that	knit	businesses	together,	both	reducing	cost	and
creating	new	opportunities	for	the	businesses	within	the	network.

We'll	see	how	the	concept	of	a	business	network	allows	you	to	analyze	a
business	by	looking	at	the	counterparties	with	which	it	interacts.	And	although
business	networks	are	industry	specific,	a	single	network	can	be	used	to	support
multiple	use	cases,	and	linked	to	other	business	networks	to	form	networks	of
networks.

We'll	spend	some	time	introducing	the	vocabulary	of	business	network,
introducing	key	terms	such	as	participants,	assets,	transactions	and	events.
These	elements	are	then	combined	to	define	the	behaviour	of	the	business
problem	being	analyzed.	We're	able	to	use	business	requirement	to	create	a
technology	blueprint	that	can	be	used	to	implement	the	solution.	By	the	end	of
this	chapter,	you'll	be	ready	to	use	Hyperledger	Fabric	and	Hyperledger
Composer	to	implement	these	ideas,	which	you	will	do	in	the	following	chapter.	

While	the	idea	of	a	business	network	is	necessary	to	understand	before	you
implement	a	blockchain	network,	you'll	find	it	a	helpful	concept	for	wider	issues
such	as	performing	blockchain	analytics,	integrating	with	existing	systems,	and
how	to	structure	your	application	and	enterprise	architectures.	In	this	sense,	this
chapter	can	be	read	stand-alone	without	implementing	a	network	afterwards.

We	will	be	covering	the	following	topics	in	this	chapter:

A	language	for	business	networks
The	concept	of	a	business	network
Defining	business	networks
Introducing	participants

Introducing	assets
Introducing	transactions
Introducing	events
Implementing	a	business	network

A	busy	world	of	purposeful	activity
Imagine	for	a	moment	that	we're	flying	in	a	plane	over	a	large	city.	We	can	see
factories,	banks,	schools,	hospitals,	retail	stores,	car	showrooms,	ships	and	boats
at	the	port,	and	so	on.	These	are	the	structures	that	define	the	city.

If	we	look	carefully,	we'll	see	things	happening	within	and	between	these
structures.	Lorries	might	be	delivering	iron	ore	to	the	factory,	customers	might
be	withdrawing	money	from	banks,	students	might	be	sitting	exams—it's	a	busy
world	down	there!

And,	if	we	could	look	a	little	closer,	we	would	see	that	all	these	people	and
organizations	are	involved	in	meaningful	activity	with	each	other.	Students
receiving	assessments	from	their	teachers	that	will	subsequently	help	them	get
into	college.	Banks	giving	loans	to	clients	who	can	then	move	home.	Factories
making	components	from	raw	materials,	which	are	assembled	into	complex
objects	by	their	customers.	People	buying	used	cars	from	dealerships	that	they
use	to	get	them	to	work	every	day,	or	go	on	vacation!

We	might	marvel	at	the	diversity	of	all	these	structures	and	the	processes
between	them.	We	might	even	wonder	how	it	all	manages	to	work	together	so
effortlessly!

We	might	then	reflect	upon	all	these	diverse	activities,	and	wonder	whether	they
all	have	something	in	common?	Are	there	repeatable	patterns	that	allow	us	to
make	sense	of	all	this	complexity?	Is	there	a	resolution	at	which	all	this	activity
looks	the	same?	Are	all	these	people	and	organizations,	in	some	sense,	doing	the
same	thing?

The	answer,	of	course,	is	yes!	The	following	section	gives	us	a	better
explanation.

Why	a	language	for	business
networks?
A	business	network	is	a	way	of	thinking	that	allows	us	to	look	at	all	these
activities	and	describe	it	in	a	very	simple	language.	And,	because	we're	trying	to
formulate	the	world	in	a	language	that	makes	sense	to	a	blockchain,	and	since
blockchain	is	a	simple	technology,	we	expect	the	vocabulary	of	that	language	to
be	simple.	In	the	next	section,	you'll	see	that	it	is!

But	before	we	dive	in,	let's	ask	ourselves	why	we	want	to	create	a	language	that	a
blockchain	can	understand?	Well,	if	we	can,	then	we	can	bring	all	the	benefits	of
the	blockchain	to	the	world	described	by	that	language.	And,	we	can	summarize
these	benefits	neatly—increased	trust.

Increased	trust	means	that	the	student	can	show	their	high	school	certificates	to
their	college,	who	can	be	confident	about	the	veracity	of	the	qualifications.	It
means	that	the	bank	can	provide	a	loan	to	its	customer	at	the	lowest	rates
because	it	can	be	confident	about	the	financial	well-being	of	its	client.	It	means
that	the	component	manufacturer	can	charge	a	higher	price	for	their	output
because	their	customers	in	turn	can	be	sure	of	the	quality	of	the	raw	materials,
knowing	their	provenance.	And	finally,	the	the	buyer	of	the	used	car	can	be
confident	about	their	purchase	because	they	can	prove	that	it	previously	only	had
one,	careful,	owner!

Defining	business	networks
We	can	summarize	all	these	idea	using	the	concept	of	a	business	network:

A	business	network	is	a	collection	of	participants	and	assets	than	undergo	a	life	cycle	described	by
transactions.	Events	occur	when	transactions	complete.

You	may	wonder	what	this	means.	After	all	that	build-up,	we're	telling	you	that	a
couple	of	apparently	simple	sentences	describe	all	this	complexity?

The	simple	answer	is	yes—and	we'll	soon	explain	by	describing	in	more	detail
what	we	mean	by	participants,	assets,	transactions,	and	events.	Then,	you'll
see	that	all	this	rich	behavior	can	be	described	by	a	relatively	simple	language
vocabulary.

A	deeper	idea
In	fact,	there	is	a	deeper	idea	behind	business	networks—that	the	language	and
vocabulary	of	technology	should	closely	match	that	of	the	business	domain,
removing	the	need	for	significant	translation	between	business	concepts,	and
technology	concepts.	Business	networks	move	away	from	the	idea	of
disconnected	technology	by	describing	the	underlying	technology	in	the	same
language	as	the	business.	It	makes	it	easier	to	reason	about	the	world	and	more
accurately	translate	ideas	into	a	fully	operational	system.

Practically	speaking,	it	means	that	while	our	initial	vocabulary	for	business
networks	is	simple,	it	is	the	beginning	of	a	language	that	can	become	very	rich	in
structure	over	time,	so	long	as	it	describes	the	details	and	nuances	of	what
happens	in	the	real	world.	We'll	come	back	to	this	idea	later,	but	for	now	let's
start	by	understanding	participants.

Introducing	participants
William	Shakespeare	said	that	the	world	is	a	stage	on	which	men	and	women	are
the	actors.	In	a	similar	way,	a	business	network	has	a	cast—a	set	of	actors	who
are	interacting	with	each	other	for	some	form	of	mutual	benefit.	We	call	these
actors	the	participants	in	a	business	network.	For	example,	the	participants	in	an
education	network	might	be	students,	teachers,	schools,	colleges,	examiners,	or
government	inspectors.	The	participants	in	an	insurance	network	might	be
policyholders,	brokers,	underwriters,	insurers,	insurance	syndicates,	regulators,
or	banks.

The	idea	of	a	participant	is	crucial	to	understanding	business	networks.	You
might	find	the	term	a	little	daunting	at	first,	but	there's	really	nothing	to	worry
about.	The	key	to	understanding	is	in	the	name—	participants	take	part	in	a
business	network.	It's	their	actions	that	we	are	interested	in.	Different	forms	of
the	word	are	used	to	emphasize	different	aspects	of	their	interactions:
participant,	party,	and	counter-party,	for	example.	All	these	forms	have	their
roots	in	the	idea	of	action.	As	usual,	we	find	that	the	bard	knew	a	thing	or	two
about	how	the	world	works!

Learn	to	love	this	word,	because	it's	a	door-opener!	It's	shorthand	that	you
understand	the	founding	principle	of	business—that	who	you	do	business	with	is
of	paramount	importance.	It's	more	important	than	this	though;	identifying	the
participants	in	a	business	network	is	the	first	thing	that	you	do	when	determining
whether	there's	an	opportunity	to	benefit	from	the	use	of	a	blockchain.	You	need
to	understand	the	cast	before	you	can	really	understand	what's	going	on.	And,	as
you	learn	more	about	the	interactions	between	the	participants,	you'll	be	able	to
improve	your	understanding	of	what	it	means	to	be	a	particular	participant.

Types	of	participant
There	are	different	types	of	participants	in	a	business	network,	and	we	group
them	into	three	broad	categories.	Surprisingly,	we're	not	going	to	describe	the
most	important	category	first!

Individual	participants
Hopefully,	this	category	is	a	fairly	obvious	one—the	teacher,	student	or	bank
customer	are	all	examples	of	individual	participants.	Whether	you	call	them
individuals,	people,	or	even	humans,	this	first	category	is	what	we	would
intuitively	think	of	as	a	participant	because	we	associate	them	with	ourselves.

You	might	think	that	individuals	are	the	most	important	participants	in	a
network.	After	all,	businesses	exist	to	serve	individuals,	don't	they?	Well,	yes
they	do,	but	it's	a	little	more	subtle	than	that.	While	a	business	network	usually
exists	to	serve	the	needs	of	individual	end-consumers,	blockchain	is	a
technology	that	is	more	valuable	for	the	businesses	in	the	network.	That's
because	it	allows	them	to	better	coordinate	their	activities	with	each	other,
resulting	in	lower	costs,	and	the	opportunity	for	new	goods	and	services	for	end-
consumers.	That's	why	you'll	hear	people	utter	sentences	such	as	Blockchain	is
more	important	for	B2B	than	B2C,	or	C2C—they're	trying	to	communicate	that
the	big	win	for	business	networks	is	to	use	blockchain	as	a	pervasive	fabric	for
efficient	and	creative	business-to-business	interactions.

Of	course,	individual	participants	are	important.	Businesses	need	to	know	their
end-consumers,	and	often	end-consumers	are	interacting	with	each	other	using
the	services	provided	by	the	business	network.	For	example,	if	I	wish	to	transfer
money	to	you	via	a	banking	network,	our	respective	banks	need	to	know	who	we
both	are,	so	that	the	transaction	can	be	properly	validated	and	routed.

Finally,	it's	a	fair	rule	of	thumb	that	there	are	more	individuals	known	to	a
business	network	than	there	are	businesses	in	the	network.	Nothing	too
surprising	here—it's	just	worth	pointing	this	out	so	that	your	understanding	of
what	it	means	to	be	an	individual	participant	is	complete!

Organizational	participants
Organizational	participants	are	the	most	important	actors	in	a	business	network.
The	car	dealership,	the	bank,	the	school,	and	the	insurance	company	are	all
examples	of	organizational	participants.	When	we	first	think	about	a	particular
business	network,	we	identify	these	participants,	followed	by	the	goods	and
services	they	provide	to	each	other	and	end-consumers.	These	organizational
participants	provide	the	infrastructure	for	the	business	network—the	people,
processes,	and	technology	that	make	it	work.

While	organizations	are	made	up	of	individuals,	they	are	conceptually	quite
separate	to	them.	An	organization	has	its	own	identity,	and	its	own	purpose.	It
exists	in	a	very	real	sense,	independently	to	the	individuals	which	belong	to	it.
Organizations	provide	business	networks	with	a	sense	of	permanence.	While
individuals	within	an	organization	may	change	over	time,	and	the	number	of
individuals	within	the	organization	may	grow	or	shrink,	and	even	different	roles
within	the	organization	may	come	and	go,	the	organization	remains	constant;	it
is	a	structure	with	a	much	longer	lifetime	than	any	individual's	membership	of	it.

The	final	point	to	note	about	the	nature	of	the	relationship	between	individuals
and	their	organization	is	that	it	is	individuals	who	perform	the	functions	of	the
organization,	as	defined	by	the	individual's	organizational	role.	When	a	bank
makes	a	loan	to	a	customer,	it	is	performed	by	a	bank	employee	on	behalf	of	the
bank.	In	this	way,	the	individuals	are	the	agents	of	the	organization,	and	an
individual's	role	determines	the	set	of	tasks	it	can	perform.	For	example,	a	school
teacher	can	set	a	homework	assignment	for	a	student,	but	it	requires	a	school
principal	to	hire	a	new	teacher.	In	a	nutshell,	individuals	act	on	behalf	of	the
organization,	and	with	the	authority	of	that	organization.

System	or	device	participants
System	or	device	participants	represent	the	technology	components	in	the
business	network.	They	are	really	a	special	kind	of	individual	participant,	and	if
you	find	it	helpful,	you	can	just	think	of	them	that	way.	There	are	however,	two
reasons	why	we	call	them	out	separately.

Firstly,	there	are	a	lot	of	technology	components	in	today's	business	networks!
For	example,	there	are	ERP	systems,	payment	engines,	reservation	systems,
transaction	processors,	and	much,	much	more.	In	fact,	most	of	the	heavy-lifting
inside	today's	business	networks	is	done	by	these	systems.	These	systems	are
associated	with	organizations	that	own	them,	and	just	like	the	individuals	we
discussed	earlier,	these	systems	act	on	behalf	of	their	owning	organizations—
they	too	are	its	agents.

The	incorporation	of	a	blockchain	into	a	business	network	is	going	to	add	more
system	participants	with	whom	the	other	participants	(individual,	organizational,
and	system/device)	can	interact.	It's	important	to	be	aware	of	these	blockchain
system	participants	because	they	are	going	to	provide	very	useful	services	to	the
business	network!

Secondly,	devices	are	becoming	a	more	important	part	of	the	business	world.
And,	while	many	devices	today	are	relatively	simple,	there's	no	doubt	that
devices	are	acquiring	more	characteristics	of	being	autonomous.	We've	all	heard
of	the	expected	emergence	of	self-driving	vehicles,	and	it's	in	this	spirit	that	we
introduce	the	concept	of	device	participants.	It	may	be	increasingly	important
to	think	of	these	devices	playing	a	larger	role	in	business	networks.	So,	while	we
don't	expect	cars	to	become	intelligent	anytime	soon	(whatever	that	might
mean!),	it's	helpful	to	call	out	these	increasingly	autonomous	devices	as	active
rather	than	passive	entities	in	a	network.

Participants	are	agents
Our	examination	of	participant	types	shows	us	that	they	all	have	one	thing	in
common—they	have	a	significant	degrees	of	agency—they	actively	do	things.
Although	systems	and	devices	have	a	level	of	autonomy	that	is	limited	by	their
programming	and	algorithms,	it	is	nonetheless	helpful	to	think	of	them	this	way.
And,	the	interactions	between	these	relatively	autonomous	actors	serves	as	a
prompt	to	the	next	concept	in	a	business	network,	namely	assets.	We'll	see	later
that	the	entities	that	move	between	participants—assets—have	none	of	this
autonomy.	These	are	subject	to	the	forces	placed	upon	them	by	participants.
More	on	this	later.

Participants	and	identity
Finally,	and	very	importantly,	participants	have	identity.	For	example,	a	student
has	a	student	ID,	a	driver	has	a	driving	license,	and	a	citizen	has	a	social	security
number.	It's	obvious	that	there	is	a	difference	between	a	participant	and	what's
used	to	identify	a	participant.	And,	it's	really	important	to	hold	these	two
concepts	as	closely	related,	but	separate	to	each	other.

For	example,	a	participant	might	have	different	identities	to	participate	in
different	business	networks—it	might	be	the	same	bank	which	participates	in	an
insurance	network,	and	a	mortgage	network,	but	it	will	have	different	identities
in	these	two	networks.	Moreover,	even	within	a	single	network,	a	participant
might	have	their	current	identity	compromised,	allowing	them	to	be
impersonated.	In	this	case,	their	compromised	identity	will	be	revoked	and	a
replacement	issued	for	use	by	the	true	participant,	denying	the	impersonator,
allowing	trust	to	be	restored.	Different	identities,	but	the	same	participant—that's
the	take-away	message.

It's	because	of	this	concern	over	impersonation	that	certain	identities	are
deliberately	expired	periodically.	For	example,	X.509	digital	certificates	have	an
expiry	date,	after	which	they	are	no	longer	valid.	However,	just	because	the
certificate	has	expired,	it	cannot	be	assumed	that	the	participant	is	no	longer
present.

In	fact,	it's	quite	the	opposite.	The	relative	permanence	of	a	participant	compared
to	its	identity	means	that	it	can	be	used	to	provide	a	long-term	historical
reference	of	who	does	what	in	a	business	network.	The	consistency	of	identity
provided	by	a	participant	over	time	helps	us	reason	about	the	history	of
interactions	in	a	business	network.	We	could	do	this	without	the	concept	of	a
participant—just	using	identities,	and	keeping	a	clear	head	about	how	and	when
they	changed	in	relation	to	each	other,	but	it	would	be	less	intuitive.

That's	just	about	it	on	the	topic	of	participants;	you're	now	an	expert!	As	you	can
tell,	participants	are	probably	the	most	important	thing	about	a	business	network,
which	is	why	we	spent	quite	a	bit	of	time	discussing	them.	Let's	now	turn	our

attention	to	the	objects	that	move	between	participants,	namely	assets.

Introducing	assets
We've	seen	how	a	business	network	is	defined	by	the	participants	who	operate
within	it.	These	participants	are	the	active	agents	who	perform	meaningful
interactions	within	the	network,	and	its	their	transactions	which	are	of	paramount
importance.	We	now	ask	ourselves	the	question,	What	flows	between
participants?	To	which	the	simple	answer	is	assets.

To	understand	what	we	mean	by	an	asset,	let's	look	at	some	examples.	We	notice
that	a	student	receives	coursework	from	their	tutor.	That	same	student	may
subsequently	show	their	educational	certificate	to	a	university.	A	car	dealer	sells
a	car	to	a	buyer.	An	insurance	company	insures	that	same	car	for	a	policyholder,
issuing	a	policy.	A	policyholder	makes	a	claim.	These	examples	all	contains
assets:	coursework,	education	certificate,	car,	policy,	and	claim.

Assets	flow	between	participants
We	can	see	that	assets	are	the	objects	that	flow	between	participants.	Whereas
participants	have	a	significant	degree	of	autonomy,	assets	are	quite	passive.	This
property	of	assets	is	foundational—assets	tend	to	have	the	most	meaning	to	the
counter-parties	who	exchange	them.	That's	not	to	say	that	other	participants
aren't	interested	in	these	assets,	but	it	does	emphasize	the	passive	nature	of
assets.	So	what	makes	assets	so	important?	Why	are	we	bothering	to	talk	about
these	passive	objects?

The	answer	lies	in	our	choice	of	word—asset.	An	asset	is	a	thing	of	value.	Even
though	assets	are	relatively	passive,	they	represent	the	value	that	is	exchanged
between	participants.	Look	at	these	example	assets	again	with	this	value-based
lens:	coursework,	education	certificate,	car,	policy,	and	claim.	Coursework	is
valuable	to	the	teacher	and	student;	an	education	certificate	is	valuable	to	the
student	and	university;	a	car	is	valuable	to	the	dealership	and	buyer;	a	policy	is
valuable	to	the	insurance	company	and	policy	holder;	a	claim	is	valuable	to	the
claimant	and	insurance	company.	Hopefully,	it's	now	clear	why	assets	are
important,	and	why	they	are	called	assets!

As	a	minor	note,	don't	think	that	because	we	have	assets,	we	must	have	liabilities
—we're	not	quite	using	the	term	this	way.	It's	absolutely	true	that	if	we	were	to
measure	objects	as	counting	for	us,	or	counting	against	us,	we	would	term	them
assets	or	liabilities,	but	that's	not	quite	what's	happening	here—we're	using	asset
as	a	concrete	noun,	rather	than	as	a	quality	or	abstract	noun.

Tangible	and	intangible	assets
Let's	continue	our	understanding	of	assets	by	considering	tangible	and	intangible
assets.	Tangible	assets	are	things	we	can	touch	and	feel—cars,	paper	money,	or
coursework.	Intangible	assets	are	things	such	as	mortgages,	intellectual	property
rights,	insurance	policies,	and	music	files.	In	an	increasingly	digital	world,	we're
going	to	see	a	lot	more	intangible	assets.	You'll	hear	people	say	that	objects	are
becoming	de-materialized,	and	the	idea	of	an	intangible	assets	nicely	captures
this	concept.

A	couple	of	small	points	should	be	noted	to	avoid	confusion	on	our	usage	of	the
word	intangible.	Firstly,	as	we're	dealing	with	a	digital	ledger,	in	some	trivial
sense,	everything	on	a	blockchain	is	intangible.	What's	interesting	is	the	nature
of	the	object	itself—using	the	word	intangible	helps	you	to	remember	to	look	out
for	things	that	you	cannot	see	in	the	physical	world.

Secondly,	the	use	of	intangible	is	not	intended	as	a	statement	of	value.	Often,	in
accounting	systems,	we	use	this	term	when	we	have	trouble	defining	something,
such	as	goodwill.	Again,	we're	not	using	the	word	in	this	sense;	our	intangible
assets	have	a	more	concrete,	definite,	and	exchangeable	form	than	this,	because
they	are	things	of	value,	even	if	you	cannot	touch	them.

The	structure	of	assets
Let's	now	re-focus	to	look	at	the	structure	of	assets.	An	asset	has	a	set	of
attributes	called	properties	and	a	set	of	attributes	called	relationships.	Property
attributes	are	easy	to	understand—they	are	the	characteristics	of	an	object.	For
example,	a	car	has	a	date	of	manufacture,	a	color,	and	an	engine	size.	Or,	a
mortgage	has	a	value,	lifetime,	and	repayment	schedule.	A	particular	asset	is
identified	by	a	particular	set	of	property	values.	For	example,	my	car	might	be
manufactured	in	2015,	be	white	in	color	and	have	a	1.8-litre	engine.	Another
example—your	mortgage	might	be	worth	100,000	USD,	have	a	lifetime	of	25
years,	and	be	payable	monthly.	It's	important	to	distinguish	this	difference—
between	the	structure	of	an	asset	in	general,	its	type,	and	particular	instance	of
an	asset.

Secondly,	an	asset	also	has	a	set	of	attributes	called	relationships.	A	relationship
is	a	special	kind	of	property—it's	a	reference	to	another	asset!	You	can	see
instantly	why	this	is	important.	For	example,	a	car	has	an	insurance	document.
The	car	is	an	object	of	value,	and	the	insurance	document	is	an	object	of	value.
Moreover,	an	insurance	document	names	a	policy	holder.	In	our	examples,	both
the	subject	and	the	object	are	assets,	and	they	relate	to	each	other	in	a	way	that
provides	essential	meaning.

We'll	see	later	that	describing	or	modeling	these	relationships	is	an	extremely
important	activity,	because	we're	describing	how	the	world	works.	In	the
previous	example,	we	made	a	deliberate	mistake—yes,	really!	That's	because	in
the	real	world,	it's	actually	the	policy	document	that	is	central,	as	it	names	the
car	and	the	policy	holder.	In	modeling,	we	call	this	an	associative	relationship,
and	we'll	see	why	it's	really	important	to	get	this	kind	of	thing	right.	For
example,	nowhere	in	the	nature	of	a	car	will	you	find	an	insurance	document—a
car	is	insured	by	virtue	of	the	fact	that	it	is	named	in	a	valid	policy	document.
Moreover,	if	I	want	to	insure	more	people	to	drive	the	car,	I	add	their	name	to	the
policy	document,	not	to	the	car!	Much	more	on	this	later—for	now,	it's	enough
to	remember	that	assets	have	properties	and	references,	and	particular	objects
have	concrete	values	for	these	attributes.

It's	also	worth	a	brief	mention	on	the	nature	of	what	makes	an	asset	attribute	a
property	rather	than	a	reference	to	another	asset.	A	simple	answer	is:	when
properties	get	too	big,	break	them	out	into	an	asset	reference!	Of	course,	that's	a
very	unsatisfactory	answer!	Why?	Because	I	didn't	tell	you	what	defines	big!	A
better	answer	is	that	a	reference	is	required	when	a	property	satisfies	a	separate
concern.	This	principle—separation	of	concerns—is	a	key	design	principle	in
any	system.	For	example,	the	policy	validity	date	is	not	a	separate	concern	for	an
insurance	policy,	but	the	car	and	named	drivers	are	separate	concerns.	This
principle	helps	us	to	reason	about	insurance	policies,	cars,	and	drivers
independently	of	each	other,	which	in	turn	allows	us	to	model	the	real	world
more	realistically.	Finally,	on	this	aspect	of	assets,	property	and	relationship
attributes	are	domain-specific—they	relate	to	the	nature	of	the	problem	at	hand.
So,	for	a	car	manufacturer,	color	might	be	an	attribute	of	a	car—but	for	a	paint
manufacturer	color	is	most	definitely	an	asset	type!

Ownership	is	a	special	relationship
There's	one	particular	kind	of	relationship	that's	particularly	important	in	a
business	network,	and	that's	the	concept	of	ownership.	Ownership	is	an
associative	relationship	such	as	the	insurance	policy	document	we	discussed
earlier.	Let's	think	about	a	specific	example—a	person	owns	a	car.	Is	the	owner
an	attribute	of	the	car?	Is	the	car	an	attribute	of	the	person?	After	a	little
thinking,	we	might	realize	that	neither	statement	captures	what	it	means	to	own
something.	Ownership	is	a	mapping	between	the	person	and	the	car.	Ownership
is	a	concept	that's	quite	separate	to	the	car	and	its	owner.

It's	important	to	understand	this	way	of	thinking	about	ownership,	because	in
many	cases	we	model	the	ownership	relationship	via	the	car,	or	via	the	owner,
and	that's	sufficient	for	many	purposes.	But,	the	nature	of	an	ownership
relationship	is	an	associative	one,	and	it's	important	to	realize	this—because
blockchains	are	often	used	to	record	ownership	and	transfer	of	ownership	in	a
business	network.	For	example,	governments	often	hold	ownership	records—for
land	or	vehicles.	In	these	cases,	the	primary	assets	under	consideration	are
ownership	relationships.	When	a	vehicle	or	land	is	transferred	between
participants,	it's	this	ownership	record	that	changes	rather	than	the	assets.	That's
important	because	we're	often	interested	in	the	the	history	of	a	vehicle	or	piece
of	land,	and	while	the	vehicle	or	land	itself	may	not	change,	it's	ownership	most
definitely	does.	It's	important,	therefore,	to	be	clear	whether	we're	talking	about
the	history	of	the	asset,	or	the	history	of	ownership.	These	kinds	of	history	are
often	called	provenance—they	tell	us	who	has	owned	an	asset,	and	how	it	has
changed	over	time.	Both	aspects	are	important	because	knowing	the	provenance
of	an	asset	increases	our	confidence	in	it.

Asset	life	cycles
This	idea	of	provenance	leads	us	very	naturally	to	the	concept	of	an	asset	life
cycle.	If	we	consider	the	history	of	an	asset,	then	in	some	very	meaningful	sense,
an	asset	is	created,	changed	over	time,	and	eventually	ceases	to	exist.	For
example,	consider	a	mortgage.	It	comes	into	existence	when	a	bank	agrees	to
lend	a	sum	of	money	to	a	customer.	It	remains	in	existence	for	the	term	of	the
mortgage.	As	the	interest	rate	changes,	it	determines	the	monthly	repayment
amount	according	to	a	fixed	or	a	variable	rate	of	interest.	The	term	of	the
mortgage	may	be	changed	with	the	agreement	of	both	the	bank	and	the	mortgage
holder.	Finally,	at	the	end	of	the	mortgage,	it	ceases	to	exist,	although	a	historic
record	of	it	may	be	kept.	The	mortgage	may	be	terminated	early	if	the	customer
wishes	to	pay	it	off	early	(maybe	they	move	home),	or	less	fortunately	if	they
default	on	the	loan.	In	some	sense,	we	see	that	the	mortgage	was	created,	the
term	was	periodically	changed,	and	then	the	mortgage	was	completed	either
normally	or	unexpectedly.	This	concept	of	a	life	cycle	is	incredibly	important	in
a	business	network,	and	we'll	discuss	it	in	detail	later,	when	we	discuss
transactions.

Returning	to	assets,	we	can	see	that	during	their	life	cycle,	assets	can	also	be
transformed.	This	is	a	very	important	idea,	and	we	consider	two	aspects	of	asset
transformation—namely	whether	the	the	transformation	involves	division	or
aggregation,	and	whether	it	is	a	homogeneous	or	heterogeneous
transformation.	These	terms	sound	a	little	intimidating,	but	they	are	very	simple
to	understand,	and	best	described	using	an	example	of	each.

In	the	first	example,	we	consider	a	precious	gemstone	that	has	been	mined.	In
general,	a	mined	gemstone	is	too	large	for	any	jeweler	to	use	in	a	single	piece	of
jewellery.	It	must	be	broken	into	smaller	stones,	each	of	which	may	be	used	for
single	item	of	jewellery.	If	we	were	to	look	at	the	history	of	a	large,	mined
gemstone,	we	would	see	that	it	underwent	a	process	of	division.	The	initial	asset
was	a	gemstone,	and	it	was	transformed	into	a	set	of	smaller	gemstones,	each	of
which	was	related	to	the	original	gemstone.	We	can	see	that	the	asset
transformation	is	homogeneous,	because	although	the	smaller	gemstones	are
most	definitely	different	assets,	they	are	the	same	type	as	the	original	asset.	A

similar	process	of	homogeneous	transformation	often	occurs	with	intangible
assets,	for	example,	when	a	large	commercial	loan	or	insurance	request	is
syndicated	among	several	companies	to	diversify	risk,	or	when	a	stock	is	split.

In	our	next	example,	we	consider	the	jeweler	using	a	smaller	gemstone.	We
imagine	they	use	the	gemstone	to	create	a	fine	ring	for	a	customer.	To	make	the
ring,	they	use	all	their	skills	to	set	the	gemstone	in	a	mounting	on	a	bezel
connected	to	a	hoop	via	a	shoulder.	A	jeweler's	craft	is	to	be	admired—they
transform	a	small	block	of	silver	and	a	gemstone	into	a	valuable	piece	of
jewellery.	Let	us	consider	for	a	moment	the	assets	under	consideration.	We	can
see	that	the	metal	block	and	gemstone	have	been	combined,	or	aggregated,	to
form	the	ring.	We	also	note	that	the	ring	is	a	different	asset	to	the	gemstone	or
silver	block,	which	served	as	inputs.	We	can	see	that	these	inputs	have
undergone	a	heterogeneous	transformation	because	the	output	asset	is	of	a
different	type.

These	processes	of	aggregation	and	division	are	seen	in	many	asset	life	cycles.
It's	very	popular	in	manufacturing	life	cycles,	but	with	intangible	assets.	For
example,	we	see	it	in	mergers,	where	companies	can	be	combined	together,	or
acquisitions,	where	one	company	ceases	to	exist	by	being	incorporated	into
another	company.	The	reverse	processes	of	de-merger	or	spin-off	is	neatly
described	as	asset	division.

Describing	asset's	life	cycles	in	detail
with	transactions
Let's	consider	how	assets	move	through	their	life	cycle.	We	have	learned	that
assets	are	created,	transformed,	and	eventually	cease	to	exist.	Although	life	cycle
is	a	very	useful	concept,	these	steps	seems	somewhat	limited.	Surely	there	are
richer	descriptions	for	the	set	of	steps	an	asset	goes	through	in	its	life	cycle?	The
answer	is	yes!	Transactions	define	a	rich,	domain-specific	vocabulary	for
describing	how	assets	evolve	over	time.	For	example,	an	insurance	policy	is
requested,	refined,	signed,	delivered,	claimed-against,	paid-out	against,
invalidated,	or	renewed.	Each	step	of	this	life	cycle	is	a	transaction—we're	going
to	talk	a	lot	more	about	transactions	in	the	next	section.

Finally,	as	with	assets,	participants	can	go	through	a	life	cycle,	described	by
transactions.	So,	you	might	wonder,	what	is	the	difference	between	assets	and
participants?	Well,	it	really	comes	down	to	thinking	about	form	versus	function.
Just	because	assets	can	have	a	life	cycle	described	by	transactions,	and	likewise
participants,	does	not	make	them	the	same	thing.	In	the	same	way	that	birds,
insects,	and	bats	can	fly,	they	are	definitely	not	related.	In	a	general	sense,	we
think	of	participants	and	assets	as	as	resources—they	are	related	only	in	the	most
general	sense.

That	ends	our	discussion	on	assets!	As	we	saw	towards	the	end	of	the	topic,
transactions	are	of	paramount	importance	in	describing	the	asset	and	participant
life	cycles,	so	let's	now	turn	to	this	subject!

Introducing	transactions
Our	journey	so	far	has	involved	understanding	the	fundamental	nature	of	a
business	network—that	it	is	comprised	of	participants	involved	in	the
meaningful	exchange	of	assets.	Let's	now	focus	on	the	most	important	concept	in
business	networks—exchange.

Change	as	a	fundamental	concept
Why	is	exchange	the	most	important	idea?	Well,	without	it,	participants	and
assets	have	no	purpose!

This	seems	like	an	excessively	hyperbolic	statement!	However,	if	you	think
about	it	for	a	moment,	participants	only	meaningfully	exist	in	the	sense	that	they
exchange	goods	and	services	(collectively	known	as	assets)	with	each	other.	If	a
participant	does	not	exchange	with	another	participant,	they	don't	exist	in	any
meaningful	way.	It's	the	same	with	assets—if	they	aren't	exchanged	between
participants,	then	they	don't	exist	in	any	meaningful	way	either.	There's	no	point
in	an	asset	having	a	life	cycle	if	it	doesn't	move	between	different	participants,
because	the	asset	is	private	to	a	participant	and	serves	no	purpose	in	the	business
network	outside	the	participant's	private	context.

Change,	therefore,	is	the	fundamental	principle	in	business	networks.	When	we
think	about	exchange,	transfers,	commerce,	buying,	selling,	agreement,	and
contracts,	all	of	these	motivational	ideas	are	concerned	with	the	business	and	the
effects	of	change.	Change	gives	the	world	of	business	motion	and	direction.	The
way	we	capture	change	is	via	a	transaction.	That's	why	transaction	is	the	most
important	concept	in	a	business	network—it	defines	and	records	change—
change	of	asset;	change	of	asset	ownership;	change	of	participants.	Whenever
anything	changes	in	a	business	network,	there's	a	transaction	to	account	for	it.

Transaction	definition	and	instance
The	term	transaction	is	often	used	in	two	closely	related,	but	different	ways,	and
it's	important	to	be	conscious	of	this	difference.	We	sometimes	use	the	term
transaction	to	describe	in	general	terms	what	happens	in	a	transaction.	For
example,	we	might	define	that	a	property	transaction	involves	a	buyer	paying	an
agreed	amount	to	the	owner	of	the	property	in	exchange	for	possession	of	the
property,	and	exchange	of	the	deeds	of	title.	(Almost	always,	the	buyer	also
acquires	the	rights	to	subsequently	sell	the	property.)	In	this	sense,	the	term
transaction	is	used	to	describe	in	general	the	process	of	exchange	in	the	terms	of
the	participants	and	assets	involved.

The	other	sense	in	which	the	word	transaction	is	used	is	as	a	description	of	a
particular	transaction.	For	example,	we	might	say	that	on	10	May	2018,	Daisy
bought	a	bicycle	from	the	Winchester	bicycle	shop	for	300	GBP.	We're	using	the
term	transaction	here	to	describe	a	particular	instance	of	a	transaction.	These	two
usages	are	very	closely	related,	and	the	context	almost	always	makes	it	clear
which	one	we're	talking	about.

The	fundamental	difference	between	the	two	usages	is	that	the	former	defines
what	it	means	to	be	a	transaction,	and	the	latter	captures	a	particular	instance	of	a
transaction.	In	the	real	world,	we	see	examples	of	transaction	instances	all	the
time—whenever	we	go	into	a	shop	to	buy	some	goods,	we	are	offered	a	receipt!
In	our	previous	example,	Daisy	probably	got	a	receipt	for	her	bicycle.	The
receipt	might	be	made	of	paper,	though	nowadays	it	is	often	sent	to	our	phone	or
email	address.	This	receipt	is	a	copy	of	the	transaction—it's	Daisy's	personal
record	of	what	happened.	The	bicycle	shop	also	keeps	a	copy	of	the	transaction
record	themselves	for	their	own	accounting	purposes.

Implicit	and	explicit	transactions
Note	that	you	don't	often	see	an	explicit	transaction	definition	for	a	transaction
like	this;	the	definition	is	encoded	in	the	people,	processes,	and	technology	that
you	interact	with.	For	low-consequence	transactions	such	as	Daisy's,	the
transaction	definition	is	implicit.	Only	if	there's	a	dispute	do	we	get	to	find	out
how	the	transaction	is	defined.	For	example,	if	Daisy's	bicycle	chain	snaps	after
a	couple	of	days,	she	might	reasonably	expect	that	the	chain	would	be	fixed	free
of	charge,	or	the	bicycle	replaced,	or	she	would	get	her	money	back.	This	is	the
point	at	which	Daisy	determines	the	true	nature	of	her	transaction	with	the
Winchester	bicycle	shop.

It	looks	like	this	kind	of	implicit	transaction	definition	only	has	downsides—but
in	fact	that's	not	the	case.	Firstly,	every	country's	laws	have	explicit	notions	of	a
fair	transaction	that	would	give	Daisy	reasonable	expectations	as	she	entered	the
transaction.	In	most	countries	this	is	called	something	such	as	a	Sale	of	Goods
Act,	and	it	specifies	the	rights	and	responsibilities	of	all	counter-parties	involved
in	any	commercial	transaction.	Secondly,	the	lack	of	an	explicit	contract
simplifies	the	interaction	between	Daisy	and	the	bicycle	shop.	Given	that,	in
most	cases,	bicycles	perform	well	for	an	extended	period	after	purchase,	a
receipt	is	sufficient	for	most	practical	purposes.	It	would	be	both	costly	and
timely	to	re-state	what	everyone	knows	to	be	true	every	time	a	simple	purchase
was	made.	This	kind	of	simplification	is	an	example	of	what	people	often	call
reducing	friction.

For	high-consequence	transactions,	or	those	with	special	conditions,	the	situation
is	very	different—it	is	vital	that	the	transaction	definition	is	made	explicit,	in
advance.	If	we	look	at	Daisy's	transaction	again,	we	can	see	that	if	there	was	a
dispute,	there	would	have	been	other	follow-up	transactions—for	example,	the
bicycle	might	have	had	its	chain	replaced,	or	in	an	extreme	circumstance	she
might	have	got	her	money	back.	We	can	see	that,	in	general,	we	would	require
several	conditional	transactions	to	describe	a	satisfactory	interaction	between
participants	for	such	a	transaction.	It	means	that	if	Daisy	had	been	getting	a
mortgage,	rather	than	a	bicycle,	it	would	have	been	necessary	to	specify	several
transactions	and	the	conditions	under	which	they	could	be	executed.	You've

probably	heard	of	a	term	for	such	a	collection	of	transactions	and	conditions—a
contract.

The	importance	of	contracts
For	high	value	assets,	it's	important	to	have	a	contract.	It	defines	a	related	set	of
transactions	and	conditions	under	which	they	occur.	A	contract	normally	centers
around	a	particular	asset	type	and	involves	a	well-defined	set	of	participant
types.	If	you	look	at	a	real-world	contract,	it	includes	a	combination	of
statements	about	instances	and	statements	about	definitions.	At	the	top	of	the
contract,	all	the	assets	and	participants	will	be	laid	out	with	particular	values—
namely	Daisy	(the	buyer),	Winchester	bicycles	(the	seller),	300	GBP	(the	price),
10	May	2018	(the	date	of	purchase)	and	so	on.	It's	only	after	all	these	type-to-
instance	mappings	have	been	laid	out,	that	the	contract	is	then	defined	in	terms
of	these	types,	transactions,	and	conditions	under	which	they	occur,	without
reference	to	the	particular	instance	values.	This	is	what	makes	contracts	a	little
strange	to	read	at	first—but	once	you	can	see	the	structure	in	terms	of
participants,	assets,	and	transactions,	and	their	respective	values,	they	are
actually	quite	easy	to	understand,	and	all	the	more	powerful	for	this	structure.

Signatures
The	final	thing	we	see	in	a	contract	is	at	the	bottom	of	it—the	signatures!	In
many	ways,	signatures	are	the	most	important	part	of	a	contract	because	they
represent	the	fact	that	all	counter-parties	have	agreed	to	the	information
contained	within	it.	And	of	course,	we	see	lots	of	signatures	in	the	real	world.
Daisy's	shop	receipt	normally	has	her	signature	on	it—either	physical	or	digital,
via	a	private	key.	In	simple	transactions,	the	store's	signature	is	actually	implicit
—they	put	a	transaction	code	on	a	branded	receipt,	and	keep	a	copy	for	their
purposes—this	satisfies	the	purposes	of	a	signature.

However,	for	higher-consequence	transactions,	all	counter-parties	will	be
required	to	explicitly	sign	a	contract.	Even	more	pointedly,	to	ensure	that	every
party	is	entering	the	contract	with	their	eyes	open,	an	independent	third-party
such	as	a	solicitor,	notary,	or	regulator,	may	be	required	to	sign	the	contract	to
verify	the	willing,	and	free,	participation	of	those	counter-parties	explicitly
involved	in	the	transaction.

Smart	contracts	for	multi-party
transaction	processing
It's	absolutely	vital	to	understand	these	ideas.	They	are	not	particularly
complicated,	especially	if	you	relate	them	to	things	you	do	every	day!	When	it
comes	to	understanding	how	a	blockchain	helps	multiple	counter-parties	create
and	agree	low-friction	transactions	related	to	high-value	assets,	we	need	to
understand	these	terms,	and	their	importance,	both	stand-alone	and	in
relationship	to	each	other.

Now,	when	we	look	at	a	business	network,	we	can	see	that	it	is	full	of	multi-
party	transactions	governed	by	contracts!	It's	why	transactions	are	the	most
important	concept	in	a	business	network;	they	define	and	capture	the	agreed
exchanges	of	valuable	assets	between	different	counter-parties.

Now,	let's	use	a	term	you've	probably	heard	many	times	when	it	comes	to
blockchains—smart	contracts.	They	are	simply	a	digital	manifestation	of	these
ideas.	Smart	contracts	are	a	digital	form	of	a	contract—meaning	that	they	can	be
easily	interpreted	and	executed	by	a	computer	system.	In	reality,	all	computer
systems	that	implement	high-	or	low-consequence	transactions	implement
contracts.	But,	unlike	blockchains,	these	systems	do	not	have	a	technology	with
a	built-in	vocabulary	that	makes	the	translation	of	these	ideas	into	a	technology
platform	a	straightforward	exercise.

Digital	transaction	processing
As	we	mentioned	at	the	beginning	of	this	chapter,	that's	the	big	idea	of	business
networks	implemented	on	blockchains.	They	make	the	translation	from	the	real-
world	into	a	computer	system	as	simple	as	possible.	Hyperledger	Fabric,	in
particular,	makes	all	these	ideas	quite	explicit,	so	that	we	can	easily	model	and
implement	a	business	network.	It	keeps	all	the	existing	ideas	intact,	but
implements	them	in	a	fundamentally	digital	manner—using	computer	processes,
networks,	and	storage.

Transactions	are	at	the	center	of	a	business	network	because	they	act	on	assets
and	participants.	However,	it's	more	than	this.	Even	if	we	add	more	concepts	to
the	business	network,	they	must	always	be	subject	to	transactions.
Transactionality	is	the	universal	property	that	relates	to	all	aspects	of	the
business	network.	It's	like	the	ability	to	fly	that	we	mentioned	earlier	in	the
chapter—every	object	in	the	business	network	is	subject	to,	and	must	be	the
subject	of,	transactions.

Initiating	transactions
Coming	up	for	air	for	a	moment,	we	can	see	that	transactions	are	usually
initiated	by	one	participant	in	a	business	network.	This	participant	is	usually	the
consumer	of	a	service	available	from	a	particular	service	provider.	For	example,
Daisy	wishes	to	consume	the	services	provided	by	Winchester	bicycles,	when	it
comes	to	buying	a	bicycle.

Most	transactions	initiated	by	participants	are	concerned	with	the	change	in	state
of	an	asset,	but	in	some	cases	transactions	can	involve	the	change	in	state	of	a
participant.	For	example,	if	I	change	my	name	by	deed	poll,	then	in	some	sense
the	asset	being	transformed	is	me—the	participant.	This	reinforces	the	central
nature	of	transactions—that	they	capture	change	no	matter	what	the	object.

Transaction	history
When	we	previously	discussed	the	provenance	of	assets,	we	saw	that	the	history
of	an	asset	was	important—it	provided	confidence	to	participants	in	a	network—
and	this	increased	trust.	Likewise,	transaction	history	is	important,	because	it	too
increases	trust.	Why?	Well,	it	comes	back	to	those	signatures.	Any	change	must
agreed	by	all	the	participants	involved	in	the	transaction,	and	the	signatures	in
each	transaction	provide	confidence	that	every	counter-party	consented	to	the
exchange.	A	history	of	transactions	is	even	better—it	shows	that	all	all	points	in
time,	every	participant	in	the	network	has	agreed	with	every	change	described	by
every	transaction!

A	blockchain	history	contains	a	sequenced	order	of	transactions.	Although,	an
order	seems	to	imply	that	transactions	occur	in	a	time-defined	sequence,	this	is
only	partially	true.	For	example,	if	I	pay	money	into	my	bank	account	at	11.00
a.m.,	and	then	make	a	payment	from	my	bank	account	at	11.30	a.m.,	there	is	a
very	real	sense	in	which	the	first	transaction	happened	before	the	second.

Likewise,	if	you	pay	money	into	your	bank	account	at	11.00	a.m.,	and	then	you
make	a	payment	at	11.30	a.m.,	there	is	a	definite	ordering	of	your	transactions.
However,	let's	now	ask	whether	our	11.00	a.m.	transactions	happened	before	or
after	each	other?	Or,	our	11.30	a.m.	transactions?	Does	it	matter	whether	my
11.00	a.m.	transaction	is	recorded	after	your	11.30	a.m.	transaction,	even	though
it	may	have	occurred,	in	some	sense,	before	it?

Transaction	streams
This	example	shows	us	that	it's	the	dependency	of	transactions	that	matters	when
discussing	transaction	history;	transactions	that	are	dependent	on	previous
transactions	are	recorded	after	them.	For	independent	transaction	streams,	this
ordering	is	much	less	important.	We	have	to	be	a	little	bit	careful,	because
transactions	have	a	nasty	habit	of	becoming	entangled	with	each	other.	For
example,	if	your	11.30	a.m.	transaction	made	its	payment	into	my	bank	account,
then	two	seemingly	independent	transaction	streams	have	started	to	interfere
with	each	other.	This	means	that	we	cannot	arbitrarily	delay	the	recording	of
transactions.

Notice	that	we're	not	talking	about	the	actual	occurrence	of	the	transaction—at	a
particular	time,	or	in	a	particular	place—but	rather	the	recording	of	that
transaction	in	a	transaction	history.	It's	a	bit	like	a	strange,	but	comprehensive
history	book	that	records	Napoleon's	excursion	to	Italy	in	1800,	at	the	same	time
as	noting	the	United	States	Library	of	Congress	founding	in	1800,	while	also
mentioning	the	completion	of	the	literary	work	Kojiki-den	by	Motoori	Norinaga
in	Japan	in	1800.	What's	important	is	that	these	events	are	recorded—their	east
order	in	the	book	with	respect	to	each	other	is	not	of	crucial	importance,	as	long
as	they	appear	at	roughly	the	same	time.

Separating	transactions	into	different
business	networks
This	seemingly	contrived	example	of	transaction	history	actually	provides	us
with	a	deep	insight	into	the	design	of	business	networks—that	one	record	of	all
interactions	in	a	network	of	complex	interactions	is	not	a	good	idea.	The
example	starts	to	illustrate	that	it	might	be	better	design	to	associate	a	business
network	with	a	particular	concern,	rather	than	trying	to	combine	all	history	into	a
single	network.	In	our	analogy,	it	would	be	better	to	have	different	history	books
for	French,	United	States,	and	Japanese	history	and	cross-reference	them	with
each	other!

This	idea	has	concrete	and	important	consequences	for	how	you	approach
blockchain	networks.	It's	not	just	good	design,	but	essential	design	to	separate
business	networks	into	those	of	separate	concerns,	and	then	link	them	together.	It
will	lead	to	simpler,	more	comprehensible,	more	scalable,	more	extensible,	and
more	resilient	systems.	You	will	be	able	to	start	small	and	grow,	and	be	confident
that	no	matter	how	things	evolve	you	can	cope	with	change.	You'll	see
Hyperledger	Fabric	explicitly	supports	the	idea	of	multiple	business	networks
using	concepts	called	networks	and	channels,	and	we'll	discuss	these	in	more
detail	later.

Transaction	history	and	asset	states
Examining	business	network	history	in	more	detail,	we	can	see	that	there	are	two
elements	to	the	history	of	an	asset	(or	participant),	namely,	its	current	value,	and
the	sequenced	set	of	transactions	that	led	to	this	value.	We	can	generate	the	value
of	the	asset	at	all	points	in	time	if	we	sequentially	apply	from	an	arbitrary	point
in	time	all	the	transactions	that	affected	it.	Effectively,	we	think	of	transaction
history	as	a	set	of	transaction	events	that	occur	at	different	times	and	places	in
the	business	network,	thereby	determining	its	state	at	any	given	point	in	time.

We	will	see	these	two	aspects	of	business	networks	explicitly	expressed	in
Hyperledger	Fabric	via	the	concepts	of	a	ledger	world	state	and	a	ledger
blockchain.	The	world	state	holds	the	latest	value	of	an	asset	in	a	business
network,	whereas	the	blockchain	holds	the	record	of	all	transactions	in	the
business	network.	This	makes	Hyperledger	Fabric	a	little	more	powerful	than
other	blockchains—like	them,	it	records	all	the	transactions	in	a	blockchain.
Additionally,	it	also	calculates	the	current	value	of	an	asset,	making	it	very	easy
to	be	confident	that	you're	working	with	the	the	most	up-to-date	state.	These
most-recent	values	tend	to	be	the	most	important	because	they	represent	the
current	state	of	the	world.	And,	that's	what	most	participants	are	interested	in
when	it	comes	to	initiating	new	transactions.

A	business	network	as	a	history	of
transactions
In	a	very	real	sense,	we	can	consider	the	business	network	as	being	a	history	of
transactions.	What	do	we	mean	by	this?	Well,	we've	seen	that	business	networks
are	comprised	of	participants	involved	in	multi-party	transactional	asset
exchange	defined	by	contracts.	However,	if	we	re-orient	ourselves	slightly,	we
see	that	the	network	is	a	product	of	its	transaction	history,	which	in	turn	cannot
be	separated	from	the	assets	and	participants	who	initiated	the	transactions.

All	these	concepts	are	part	of	a	whole,	which	supports	and	reinforces	itself.
Participants	were	just	our	first	step	to	understanding—an	entrance	into	the	world
of	business	networks.	By	learning	more,	we	realize	that	transactions	are	in	fact
central,	while	at	the	same	time	being	meaningless	unless	they	refer	to	the	assets
and	participants	inside	the	network	they	both	create,	change,	and	describe!	It's
the	transaction	history	that	brings	everything	together	into	a	coherent	whole,	and
in	this	sense,	it	is	the	business	network.

Regulators	and	business	networks
A	final	word	on	a	special	kind	of	participant	that	is	common	to	just	about	every
kind	of	business	network—the	regulator.	The	nature	of	most	business	networks
is	that	there	is	a	participant	whose	role	is	to	ensure	that	the	transactions	obey
certain	rules.	For	example,	in	the	United	States,	the	Securities	and	Exchange
Commission	(SEC)	ensures	that	the	participants	performing	transactions
involving	the	securities	assets	do	so	according	to	agreed	laws	and	rules,	giving
investors	trust	in	the	stock	market.	Or,	in	the	United	Kingdom,	the	Driver	and
Vehicle	Licensing	Agency	(DVLA)	ensures	that	vehicles	are	properly	insured,
taxed,	and	exchanged	according	to	UK	law.	Another	example	is	in	South	Africa,
where	the	Association	for	Food	Science	and	Technology	(SAAFoST)	ensure
that	transactions	involving	farming,	food	distribution,	food	processing,	and	food
retail	comply	with	appropriate	South	African	law.

Every	business	network	has	a	regulator	of	some	kind	to	ensure	proper	oversight.
Simply	put,	the	regulator	ensures	that	everyone	plays	the	game	according	to	the
rules	of	the	business	network.	We	can	see	that	a	business	network	in	which	all
the	transactions	are	recorded	digitally	on	a	blockchain	actually	allows	the
regulator	to	do	their	job	in	a	more	efficient	and	timely	manner.

Of	course,	one	might	ask	why	we	need	a	regulator	if	all	the	transactions	are
available	to	the	appropriately	authorized	participants	who	can	prove	correct	or
incorrect	behavior?	The	answer	is	that	regulators	have	the	ability	to	sanction
certain	participants	in	the	network—specifically	to	exclude	them	from	the
network,	and	confiscate	their	assets	or	those	which	they	have	illegally	transacted
upon.	These	sanctions	are	the	most	powerful	transactions	in	the	network	as	they
provide	ultimate	power,	and	must	accordingly	be	used	only	in	extreme
circumstances.

Congratulations!	Given	you've	reached	this	far,	you've	really	understood	the
fundamental	nature	of	business	networks.	Even	better,	there's	really	only	one
more	concept	to	cover	in	our	discussion	of	business	networks:	events.	Let's
move	on	to	the	final	aspect	of	business	networks	that	you'll	find	empowering	to
understand.

Discussing	events	from	the
perspective	of	designing	a	business
network	using	Composer
We've	seen	so	far	that	the	vocabulary	of	business	networks	contains	a	compact
set	of	inextricably	linked	concepts—participants,	assets,	and	transactions.
Though	small	in	number,	these	concepts	are	very	expressive—they	contain	big
ideas,	with	lots	of	aspects	to	them,	which	support	and	reinforce	each	other.

It's	not	that	there's	something	missing,	but	by	adding	one	extra	concept,	we're
going	to	significantly	increase	the	descriptive	and	design	power	of	this
vocabulary.	This	final	concept	is	event—the	last	ingredient	in	the	mix!	The	good
news	is	that	you've	probably	heard	the	term	before,	and	many	of	the	ideas	that	it
supports	are	quite	obvious.	But	make	no	mistake,	events	are	a	hugely	powerful
concept,	and	worth	a	little	time	to	master—your	investment	in	this	topic	will	be
handsomely	rewarded.

A	universal	concept
We	think	of	an	event	as	denoting	the	occurrence	or	happening	of	a	particular
fact.	For	example,	The	President	arrived	in	Australia,	or	The	stock	market	closed
100	points	up	today,	or	The	truck	arrived	at	the	distribution	center	are	all
examples	of	events.	The	fundamental	idea	seems	quite	simple—an	event	is	a
point	in	time	when	something	significant	happens.	An	event	represents	some
kind	of	transition—moving	the	world	from	one	state	to	a	quite	different	state.
This	is	the	nature	of	events—history	is	transformed	from	a	smooth	line	to	a	set
of	joined-up	dots—where	each	dot	represents	a	significant	event.

In	the	domain	of	business	networks,	we	can	see	events	everywhere.	Participants
initiating	transactions	are	events.	Assets	undergoing	a	series	of	transformations
are	events.	Likewise,	assets	being	exchanged	between	participants	are	events.
An	asset's	life	cycle	is	nothing	but	a	series	of	events!	We	now	see	participants
joining	and	leaving	the	business	network	as	events.	Think	about	transaction
history,	we	see	it	as	a	set	of	events	about	participants	and	assets.	Goodness,	once
we	open	our	eyes,	events	really	are	everywhere!	If	we're	not	careful,	were	going
to	get	overwhelmed	by	these	little	space	invaders!

Messages	carry	event	notifications
We	think	of	messages	as	the	carriers	of	event	notifications.	In	the	real	world,	we
are	notified	of	events	via	sent	by	text	messages,	or	email,	or	maybe	a	newsfeed.
We	therefore	make	a	distinction	between	an	event	and	the	communication	of	it.
This	is	a	very	important	distinction	to	make,	because	it	illustrates	that	we	are
coupled	to	the	event	via	a	medium.

Let	us	now	plant	the	idea—which	we	will	return	to	later—that	although	there	is
a	singular	event,	multiple	participants	can	be	notified	via	separate	message
notifications.	We	see	that	there	is	a	loose	coupling	between	event-producer	and
event-consumer.	It	all	means	events	have	a	slightly	intangible	quality—their
slightly	abstract	nature	makes	them	hard	to	pin	down	except	through	the
messages	through	which	they	are	perceived.

A	word	of	mild	caution	might	be	appropriate	now—we	can	loose	focus	on	what's
important	if	we	obsess	about	events.	Firstly,	it's	obvious	that	we	need	to	consider
only	significant	events—events	that	will	likely	result	in	some	kind	of	action.
Everything	other	than	the	event	is	just	noise—we	don't	need	to	consider	it.	And
of	course,	what	constitutes	significant	is	going	to	be	domain-,	and	problem-,
specific—a	stock	market	price	rise	is	significant	in	a	financial	network,	but	not
an	educational	network.	So	for	now,	let's	use	events	as	a	tool	for	when
significant	things	happen	in	a	business	network,	when	we	need	to	understand
what	prompts	participants	to	act.	Let's	see	how	that	tool	can	be	used.

An	example	to	illustrate	event
structure
Take	an	example	of	a	stock	market	event.	Every	time	a	stock	goes	up	or	down	in
price,	we	can	represent	this	as	an	event.	For	example:

At	UTC:	2018-11–05T13:15:30:34.123456+09:00	
The	stock	MZK	increased	in	price	by	800	from	13000	JPY

	

We	can	see	that	this	is	a	description	of	an	event	where	the	stock	ABC	increased
by	800	Yen	at	a	very	specific	time	on	5	Nov	2018.

Just	like	assets	and	participants,	we	can	see	the	term	event	can	refer	to	the	type
or	instance	of	an	event.	In	our	example,	we've	shown	the	type	and	instance
information	folded	into	one.	The	event	has	a	type	Stock	Market	Tick	with	a
structure	comprising	time:	2018-11–05T13:15:30:34.123456+09:00,	symbol:
MZK,	currency:	JPY	previous:	13000,	change:	+800.	For	each	element	in	the
structure,	we've	shown	the	particular	instance	for	this	event.	We	can	see	very
clearly	from	this	event	what	happened	in	a	structured	form.

Events	and	transactions
We	can	see	that	events	are	very	closely	related	to	transactions.	Indeed,	because
an	event	often	describes	a	transaction,	it's	not	uncommon	to	see	the	terms	used
interchangeably.	However,	events	describe	a	broader	class	of	activity	than
transactions.	Specifically,	while	events	describe	a	change,	transactions	capture
the	recorded	elements	of	the	change.	Transactions	are	often	the	result	of	an
external	event—one	that	does	not	happen	as	the	result	of	the	action	of	a
particular	participant	or	asset.	In	this	case,	a	resulting	transaction	uses	a	subset	of
information	from	the	external	event	as	input.	But,	the	event	itself	is	not	part	of
the	transaction,	other	than	in	this	limited	sense.	This	requires	a	little	thought—
we're	really	picking	apart	some	subtle,	but	important,	differences.

In	what	might	appear	to	be	a	contradiction,	transactions	can	also	generate
events!	Goodness,	this	appears	to	be	getting	complicated!	But	think	for	a
moment—events	simply	describe	something	happening,	and	sometimes	events
are	explicitly	created	by	transactions,	rather	than	happening	due	to	a	force
outside	any	transaction.	In	our	stock	tick	example,	a	transaction	might	generate
an	event	to	signal	that	the	MZK	stock	has	increased	by	over	5%	in	a	single	tick!
This	event	might	be	Rapid	Stock	Rise	with	a	structure	symbol:	MZK,	gain:
6.1%—it	is	explicitly	generated	by	the	transaction.	The	transaction	embodies	the
part	of	a	business	process	whereby	a	high	percentage	stock	change	is	identified
and	communicated.	The	event	is,	in	a	very	real	sense,	part	of	the	transaction.

External	versus	explicit	events
We	can	see,	therefore,	that	events	fall	into	two	categories—external	events	and
explicit	events.	We	don't	often	think	of	these	two	terms	as	opposites,	but	they
neatly	describe	the	two	different	types	of	events	in	a	business	network.	Our	first
event	type	is	an	external	event—it	is	generated	externally	to	the	business
network.	This	event	will	be	processed	by	participants,	and	as	such	will	likely
result	in	a	transaction—don't	forget,	only	think	about	significant	events—ones
that	will	result	in	an	action.	With	an	external	event,	a	significant	amount	of	the
event	content	is	captured	as	transaction	input,	but	nothing	else	about	the	event	is
remembered.	If	we	want	so	save	an	external	event,	we	generate	an	explicit
transaction	to	do	so.

Explicit	events	are	different.	Because	they	are	generated	within	a	transaction,
they	are	automatically	part	of	the	transaction	history.	When	the	transaction	is
committed	to	the	ledger,	then	these	events	will	be	set	free	into	the	network—
where	they	will	be	consumed	by	any	and	all	participants	interested	in	them.	In
the	case	of	explicit	events,	the	ledger	itself	is	the	event	producer.

Events	cause	participants	to	act
We	can	see,	therefore,	that	events	are	important	because	they	identify	the	change
that	causes	participants	to	act!	Just	like	in	the	real	world,	when	an	event	happens,
people	and	organizations	hear	about	it,	process	the	information	in	it,	and
generate	actions	because	of	that	processing.	We	can	see	that	events	provide	one
of	the	primary	motivational	stimuli	to	participants	to	act—often	by	initiating
new	transactions	and	sometimes	by	generating	new	events.

Loosely	coupled	design
Let's	now	return	to	that	idea	of	loose-coupling.	Event	producers	and	event
consumers	do	not	directly	know	about	each	other—they	are	said	to	be	loosely
coupled.	For	example,	when	a	participant	is	added	to	a	business	network,
existing	participants	do	not	need	to	contact	the	new	joiner	to	introduce
themselves.	Instead,	the	existing	participants	listen	for	a	new	participant	event	if
they	are	interested.	Likewise,	if	a	participant	joins	a	network,	it	doesn't	need	to
reach	out	to	everyone	and	everything	it	is	interested	in,	it	just	listens	for	events	it
thinks	are	significant—events	that	might	cause	it	to	act.	We	can	see	that	the
event	producers	and	event	consumers	don't	explicitly	know	about	each	other—
they	only	know	about	events—and	thus	communication	can	wax	and	wane	very
easily—it's	much	more	scalable.

We	are	now	seeing	that	loose-coupling	is	a	major	difference	between	events	and
transactions.	Transactions	explicitly	bind	participants	to	each	other—in	a
transaction,	we	name	all	the	counter-parties.	In	an	event,	we	have	absolutely	no
idea	of	how,	or	even	if,	the	producers	and	the	consumers	of	the	event	are	related.
From	a	design	perspective,	it	means	that	we	can	create	a	very	flexible	system.
Participants	can	be	coupled	to	each	other	in	an	almost	infinitely	flexible	way	via
events,	and	this	really	does	mirror	the	richness	we	see	in	the	real	world.

The	utility	of	events
We	now	see	why	we've	added	events	to	our	definition	of	a	business	network.
Events	allow	the	business	network	to	be	almost	infinitely	flexible.	Revel	in	this
little	bit	of	chaos—it	might	be	in	some	sense	a	little	less	analyzable,	and	that's
OK.	The	real	world	isn't	analyzable	anyway—events	provide	a	highly	efficient
coordination	mechanism	between	participants	so	that	important	change	gets
agreed	and	recorded	via	multi-party	transactions.

Congratulations!	Remember	that	definition	of	a	business	network?

A	business	network	is	a	collection	of	participants	and	assets	than	undergo	a	life
cycle	described	by	transactions.	Events	occur	when	transactions	complete.

We've	realized	that	those	couple	of	sentences	are	maybe	a	little	more	powerful
than	might	first	appear—they	describe	a	very	rich	world	indeed.	Let's	do	a
worked	example	to	see	these	ideas	at	work!

Implementing	a	business	network
We've	had	a	tour	through	the	world	of	business	networks,	and	we've	seen	the
importance	of	multi-party	transaction	processing	of	assets	between	participants
—it's	the	very	lifeblood	of	these	networks.	Indeed,	because	of	the	importance	of
today's	business	networks,	a	significant	amount	of	technology	is	already
deployed	in	their	pursuit.	If	you've	worked	in	IT	for	a	little	while,	you've
probably	heard	of	Business-to-Business	(B2B),	and	maybe	even	Electronic
Data	Interchange	(EDI)	[protocols].	These	terms	describe	the	idea	and
technology	of	how	businesses	exchange	information	with	each	other.	You	might
even	have	heard	of,	or	have	experience	with,	networking	protocols	such	as	AS1,
AS2,	AS3,	and	AS4.	These	define	standard	mechanisms	about	how	to	exchange
business	data	between	two	organizations.	Don't	worry	if	you	haven't	heard	these
terms—the	key	take-away	is	that	business	networks	exist	today	in	a	very	really
sense,	and	have	lots	of	technology	applied	to	them.

What	does	implementing	a	business	network	mean?	Well,	when	it	comes	to	the
exchange	of	tangible	assets	such	as	cars	or	equipment	or	important	documents,	a
blockchain	captures	representations	of	the	assets,	participants,	transactions,	and
events	in	a	business	network.	But,	in	the	case	of	intangible	assets	it's	a	little
different—in	some	meaningful	sense,	the	increasing	de-materialization	of	assets
means	that	their	representation	inside	a	computer	system	is	as	real	as	the	asset
itself.

The	importance	of	de-materialization
Consider	the	case	of	music.	One	hundred	years	ago,	it	would	have	been	recorded
on	bakelite,	and	then	through	a	series	of	technological	innovations,	it	moved	to
vinyl,	Compact	Disc,	digital	mini-disc.	Each	step	was	cheaper	than	the	previous,
and	of	higher	quality.	But,	about	25	years	ago,	something	different	happened!
The	first	MP3	format	was	introduced	to	support	high-fidelity	audio	capture.

This	was	the	de-materialization	step,	and	it	was	quite	different	to	the	other	steps.
Yes,	it	was	cheaper,	and	of	higher	quality,	but	critically	it	stopped	music	having	a
physical	representation.	This	de-materialization	pattern	is	increasingly	common
—financial	products	such	as	bonds,	securities,	swaps,	mortgages,	and	such	are
primarily	represented	digitally.	More	and	more	documents	and	forms	are
becoming	digitized—from	trivial	examples	such	as	airplane	and	train	tickets,	to
more	important	education	certificates,	and	employment	and	health	records.	This
move	towards	digital	means	that	the	blockchain	has	more	relevance	than	we
might	otherwise	assume.

So,	when	we	implement	a	business	network	on	a	blockchain,	we	are	often	close
to	processing	the	actual	assets	in	a	business	network.	And,	it's	arguable	that	even
in	the	case	of	tangible	assets,	the	information	about	assets	is	as	important	as	the
asset	itself!	This	seems	like	hyperbole,	but	think	about	it	for	a	moment.	Let's	say
you	own	a	car.	The	car	needs	to	have	petrol,	it	needs	to	be	taxed,	serviced,	and
insured.	It	needs	an	annual	test	to	make	sure	it	is	roadworthy.	There's	a	lot	of
economic	activity	centered	around	that	car	of	yours!	Which	means	that	the
information	about	the	car	is	very	valuable	—indeed,	over	the	lifetime	of	a	car,
the	total	running	costs	will	usually	be	double	the	cost	of	the	car.	So,	maybe	the
information	about	the	car	is	more	valuable	than	the	car!?

Blockchain	benefits	for	B2B	and	EDI
A	blockchain	can	provide	a	simpler,	more	comprehensive,	approach	to	business-
to-business	(B2B)	information	processing	across	multiple	organizations.
Whereas	Electronic	Data	Interchange	(EDI)	protocols	are	only	concerned	with
the	exchange	of	information,	a	blockchain	can	store	data	in	a	ledger,	process	data
with	smart	contracts,	and	communicate	and	exchange	data	via	consensus.
Blockchain	provides	a	holistic	approach	to	multi-party	transaction	processing.	In
a	blockchain,	all	the	processing,	data,	and	communications	in	a	business	network
are	accessed	from	one	coherent	system.	That's	in	contrast	to	a	traditional	B2B
approach	where	data,	processing,	and	exchange	are	managed	by	different
systems.	This	separation	directly	results	in	significant	amounts	processing	to
join-up	information	across	these	systems,	and	a	lack	of	overall	transparency.
This	process	is	described	as	reconciliation—it	ensures	that	that	there	are	not
significant	differences	between	the	information	at	different	parts	of	the	business
network—it	is	timely	and	costly.

We	now	see	the	benefits	of	implementing	a	business	network	on	a	blockchain.
Rather	than	a	set	of	different	systems	that	record	assets,	and	different	programs
that	operate	on	them,	there	is	a	shared	view	of	the	asset	and	its	complete
transactional	life	cycle.	Blockchain	provides	an	explicit	shared	understanding	of
the	asset	and	its	life	cycle,	of	participants,	transactions,	and	events.	This	shared
nature	of	blockchain	provides	increased	trust	through	increased	transparency,
and	that	radically	simplifies	and	accelerates	processing.	For	example,
organizations	don't	have	to	perform	periodic	reconciliation	with	other
counterparts	to	make	sure	that	their	systems	tally—because	everything	tallies	all
the	time,	in	a	blockchain.

So,	let's	say	we	want	to	get	the	benefits	of	a	blockchain	for	multi-party
transaction	processing—how	do	we	do	this?	That's	what	we're	going	to	be
concerned	with	in	the	remainder	of	this	chapter—the	basic	architectural
approach,	but	mostly	design	tools,	that	you	can	use	to	implement	a	blockchain
technology	platform	for	a	business	network.

Participants	that	interact	with	the
blockchain
Firstly,	which	participants	interact	with	the	blockchain?	The	first	thing	to	say	is
that	the	primary	beneficiaries	of	a	blockchain	in	a	business	network	are	the
participants	that	hold	the	most	data,	and	typically	that	is	organizations.	It's	not	to
say	that	individuals	cannot	host	an	instance	of	the	blockchain	ledger,	but	its	more
likely	that	they	will	be	interacting	with	a	organization	that	manages	part	of	the
blockchain.	Indeed,	they	may	not	even	know	that	they	are	consuming	a
blockchain.	Within	an	organization,	although	it	is	individuals	using	applications
that	will	be	interacting	with	the	blockchain,	critically,	they	will	be	doing	so	on
behalf	of	the	organization—they	are	the	agents	of	the	organization.

Likewise,	when	it	comes	to	system	and	device	participants,	it's	unlikely	that
devices	will	host	a	copy	of	the	blockchain	ledger.	In	this	way,	devices	are	a	little
more	like	individual	participants.	In	contrast,	systems	in	the	network	can	act
either	on	behalf	of	an	organization,	or	in	some	cases,	actually	represent	the
organization.	What	does	this	mean,	that	a	system	represents	an	organization?
Well,	if	we	think	about	a	B2B	system,	then	an	organization	really	does	appear	to
the	network	as	its	B2B	gateway—for	all	intents	and	purposes,	the	gateway	is	the
organization.	It	this	way,	we	can	see	that	it	would	make	sense	for	a	large	system
to	be	very	closely	allied	to	an	instance	of	the	blockchain	ledger.

Accessing	the	business	network	with
APIs
Organizations,	individuals,	systems,	and	devices	interact	with	the	blockchain	via
a	set	of	business	network	APIs.	We'll	see	in	a	moment	how	these	APIs	are
created,	but	for	now	it's	enough	to	know	that	a	blockchain	network	is	consumed
like	a	regular	IT	system.	The	difference	is	internal—these	APIs	are	implemented
on	a	blockchain	infrastructure,	and	this	ultimately	provides	a	simpler	and	richer
set	of	APIs	than	would	otherwise	be	practically	possible.	However,	consumers	of
blockchain	APIs	don't	need	to	worry	about	this—they	just	issue	APIs,	and	the
services	they	require	just	happen.	The	trade-off	that's	occurring	is	that	the
blockchain	infrastructure	requires	more	coordination	between	the	organizations
in	the	business	network.	They	have	to	agree	on	participants,	assets,	transactions,
and	events	in	advance,	and	how	they	evolve.	While	they	can,	and	should,
process,	store,	and	communicate	information	uniquely	when	outside	the
blockchain,	they	must	agree	when	it's	on	the	blockchain.	That's	the	trade-off:	up-
front	agreement	for	the	promise	of	radical	simplification	of	business	processes	in
normal	running.

At	a	high	level,	business	network	APIs	are	easy	to	understand.	In	a	vehicle
network,	we	might	have	APIs	such	as	buyVehicle(),	insureVehicle(),	transferVehicle(),
registerVehicle(),	and	so	on.	These	APIs	are	domain-specific—the	APIs	just
mentioned	would	be	very	different	to	those	in	a	commercial	paper	network
—issuePaper(),	movePaper(),	and	redeemPaper().	It's	important	that	APIs	are	domain-
specific	because	it	makes	them	meaningful	to	the	participants	in	the	network
who	are	using	them—such	APIs	speak	the	language	of	the	participants.

A	3-tier	systems	architecture
These	APIs	work	inside	a	very	standard	systems	architecture.	Typically,	end
users	will	have	a	presentation	tier	running	on	their	web	browser	or	mobile
device.	This	will	communicate	with	an	application	server	tier,	using	an	API	that
is	defined	by	the	application	according	to	the	overall	solution	being	developed.
This	application	tier	might	be	running	in	the	cloud	or	on	an	on-premise	system.
It's	where	all	the	application	logic	for	the	application	resides,	and	it	is	the
consumer	of	the	business	network	APIs	provided	by	the	blockchain.	This
application	may	be	doing	other	work,	such	as	accessing	a	database,	or
performing	analytics—but	from	our	perspective,	it's	the	interaction	point	with
the	blockchain	network.	It	consumes	the	blockchain	APIs,	not	the	end-device.
Summarized,	these	APIs	operate	within	a	typical	3-tier	systems	architecture
structure	of	presentation,	application,	and	resource	management.

Alternatively,	if	we	have	a	device	or	system	interacting	with	the	blockchain,	then
it	will	not	have	a	presentation	tier—it	will	either	use	the	application	API	or
blockchain	APIs	directly.	In	a	very	real	sense,	a	device	is	the	presentation	tier,
and	the	system	is	the	application	tier.	Again,	this	is	all	very	standard.

Hyperledger	Fabric	and	Hyperledger
Composer
The	basic	design	approach	is	likewise	very	straightforward.	We	use	Hyperledger
Composer	to	model	the	participants,	assets,	transactions,	and	events	in	a
particular	business	network.	We	then	use	that	model	to	generate	both	blockchain
—smart	contracts	and	ledgers	that	implement	these	elements	that	are	deployed	to
the	blockchain	network	created	using	Hyperledger	Fabric.	We	also	use	the
Hyperledger	Composer	model	to	generate	a	set	of	domain-specific	APIs	to
access	the	transactions	that	manipulate	them	in	the	Hyperledger	Fabric
blockchain.	As	we've	seen,	these	APIs	will	be	used	by	applications	on	behalf	of
individuals,	organizations,	systems,	and	devices.

Summary
In	this	chapter,	we've	been	introduced	to	business	networks	and	explored	them	in
detail.	By	understanding	the	key	components	of	participants,	assets,	transactions
and	events,	we've	seen	that	in	some	sense	all	business	networks	share	the	same
concerns.

By	classifying	the	different	types	of	participants—individuals,	organizations,
systems	and	devices,	we	are	able	to	properly	describe	who	initiates	transactions
that	capture	change	in	the	business	network.	By	understanding	the	concept	of	an
asset—a	thing	of	value,	whether	tangible	or	intangible—we	were	able	to
describe	and	understand	the	resources	that	move	between	participants,	and	how
they	express	the	reason	participants	interact	with	each	other.	Understanding
participants	and	assets	allowed	us	to	understand	how	changes	to	these	are
captured	in	transactions.	And	finally,	concept	of	an	event	allowed	us	to
understand	when	significant	change	to	the	network	happened,	and	act	upon	it.

We	spent	a	few	moments	discussing	how	these	concepts	are	consumed	using
APIs,	and	in	the	next	chapter,	we're	going	focus	much	more	on	this	aspect—how
to	demonstrate	all	these	ideas	in	a	real-world	example	of	a	business	network.
We're	going	to	use	Hyperledger	Fabric	and	Hyperledger	Composer	in	particular,
so	that	you	can	see	how	to	apply	these	ideas	in	practice.

A	Business	Network	Example
In	this	chapter,	we	are	going	to	bring	together	all	the	concepts	we've	discussed
with	a	sample	business	network,	involving	a	real-world	example.	Specifically,
we're	going	to	do	a	detailed	walk-through	of	the	Hyperledger	Composer	letter	of
credit	sample,	so	that	you	can	understand	how	participants,	assets,	transactions,
and	events	are	realized	in	code.	We'll	show	how	the	business	network	is	used,
analyzed,	defined,	and	how	that	definition	is	used	to	generate	APIs,	test	them,
and	integrate	them	into	a	sample	application.	This	is	going	to	be	a
comprehensive	tour	that	will	get	you	from	concepts	right	into	implementation.
We're	going	to	use	the	letter	of	credit	sample	because	it	represents	a	well-known
process	that's	often	discussed	in	relation	to	blockchain.	Let's	discuss	the	process
first,	and	then	see	why	it's	used	as	the	poster	child	example.

The	letter	of	credit	sample
And	so	we	get	to	our	sample.	Alice,	the	owner	of	QuickFix	IT	in	the	Italy,
wishes	to	buy	computers	from	Bob,	who	runs	Conga	computers	in	the	USA.
Alice	is	going	to	apply	for	a	letter	or	credit	from	her	bank,	Dinero	Bank,	which
will	be	accepted	by	Bob's	bank,	Eastwood	Banks,	as	a	form	of	payment.

We're	going	to	try	out	the	whole	process	using	the	letter	of	credit	sample
application	found	at	https://github.com/hyperledger/composer-sample-applications.	This
repository	contains	a	number	of	sample	applications	of	business	networks–we're
going	to	use	the	letters	of	credit	sample.

https://github.com/hyperledger/composer-sample-applications

Installing	the	sample
If	you've	followed	the	steps	in	Chapter	3,	Setting	the	Stage	with	a	Business
Scenario,	you	should	have	all	of	the	prerequisites	done.	Now	fork	a	copy	of	the
sample	application's	repository	(https://github.com/hyperledger/composer-sample-applica
tions)	to	your	GitHub	account,	and	then	clone	it	to	your	local	machine	using	the
following	commands:

cd	<your	local	git	directory>

git	clone	git@github.com:<your	github	name>/composer-sample-applications.git

Navigate	the	the	appropriate	directory	and	install	the	letter	of	credit	sample
application	using	the	following	commands.	It	will	take	a	few	minutes	for	the
application	to	download	and	install:

cd	composer-sample-applications

cd	packages/letter-of-credit

./install.sh

The	install	script	will	also	start	the	application	presentation	tier	in	your	browser.
Let's	investigate.

https://github.com/hyperledger/composer-sample-applications

Running	the	sample
You'll	see	that	your	browser	has	opened	up	tabs	corresponding	to	the	different
participants	in	the	network.	Click	on	the	different	tabs	to	see	the	different
participants	in	the	network.	We're	going	to	inhabit	each	of	these	personae	as	we
work	through	the	sample.	Let's	walk	through	the	process	by	trying	out	the
application:

Step	1	–	preparing	to	request	a	letter
of	credit
We	start	with	preparing	for	our	request:

1.	 Select	the	first	tab	on	your	browser–you	will	see	the	following	page:

2.	 You	are	now	Alice!	You	can	see	your	bank	and	your	account	details.	You
can	apply	for	a	letter	of	credit	by	clicking	on	the	Apply	button.	Try	it!

3.	 You'll	be	presented	with	a	page	where	you	can	request	a	letter	of	credit:

Step	2	–	requesting	a	letter	of	credit
This	is	the	first	stage	of	the	process	you're	going	to	request	a	letter	of	credit	to
buy	computers	from	Bob!	At	the	top	of	every	screen,	you'll	see	exactly	where
you	are	in	the	process,	for	example:

On	the	left-hand	side	of	the	page,	you'll	see	the	merchants'	details—those	of
Alice	and	Bob.	Notice	the	company	names	and	account	details:

Let's	make	an	application	as	Alice.	On	the	right-hand	side	of	the	screen,	you	can
enter	the	details	of	the	trade.	Let's	pretend	that	Alice	requests	1,250	computers
from	Bob,	at	a	unit	price	of	1,500.	The	application	has	a	total	value	of	1.875M
EUR:

Also	note	that	Alice	can	chose	(with	her	bank's	permission)	some	of	the	terms
and	conditions	on	the	application.	These	are	important	terms	and	conditions	of
the	contract	with	Bob—unless	they	are	satisfied,	neither	party	will	receive	goods
or	payment:

You	can	edit	these	if	you	wish,	although	the	process	is	not	affected	by	them.

Click	on	the	Start	approval	process	button	when	you're	ready	to	move	to	the	next
stage	of	the	process:

Congratulations,	you've	just	applied	for	a	letter	of	credit!

Step	3	–	importing	bank	approval
This	is	next	stage	of	the	process.	Click	on	the	next	tab	in	your	browser.	You	are
now	Matias,	an	employee	of	Alice's	bank,	Dinero,	who	needs	to	process	her
application!	Here's	the	page	that	Matias	sees:

It	shows	the	application	from	Alice,	and	that	it	is	waiting	for	approval	from
Matias.	He	is	acting	on	behalf	of	Dinero	Bank,	and	applies	whatever	process	is
required	to	approve	or	reject	the	letter.	We	might	imagine	that	in	a	sophisticated
process,	Matias	would	only	have	to	approve	exceptional	letters	that	could	not	be
automatically	approved.

If	Matias	clicks	on	the	application,	he	is	presented	with	the	details,	which	are
essentially	the	same	as	Alice	requested:

In	our	scenario,	Matias	will	approve	the	letter	of	credit,	and	the	process	will
continue!	Select	the	accept	button	and	we'll	move	to	the	next	step:

Step	4	–	exporting	bank	approval
Click	on	the	next	tab	in	your	browser.	You	are	now	Ella,	an	employee	of	Bob's
bank,	Eastwood,	who	has	been	informed	that	Alice	wishes	to	do	business	with
Bob:

This	sample	has	taken	a	little	creative	license	with	the	process–normally,	the
letter	would	be	presented	to	Bob	by	Alice.	Bob	would	then	present	it	Ella.
However,	we	can	see	that	because	everyone	can	view	the	letter	in	advance,
process	innovations	are	possible.	We'll	elaborate	on	this	point	later.

We	can	see	that	Ella	authorizes	the	next	stage	in	the	process–and	we	can	see
where	the	letter	is	in	the	process	flow.	When	Ella	selects	the	letter,	she	can	see
the	following	details:

Notice	that	the	currency	has	been	changed.	Alice	had	to	make	her	payment	in
US	dollars	because	that's	what	Bob	wanted,	but	Ella	and	Matias	have	agreed	on
an	exchange	rate	for	Alice	and	Bob,	so	that	each	can	use	their	own	currency.
Alice	will	be	charged	in	euros,	and	Bob	will	be	paid	in	dollars.
At	the	top	of	the	screen,	you'll	see	the	following	information	that	relates	to	the
process.	We	can	see	where	we	are	in	the	process;	increased	transparency	is	made
possible	due	to	the	singular	nature	of	a	blockchain,	even	though	different
organizations	each	host	and	approve	their	stage	of	the	process	via	their	own
systems:

Let's	move	the	process	forward	again.	Ella	can	approve	the	letter	by	clicking	on
the	accept	button:

Step	5	–	letter	received	by	exporter
Click	on	the	next	tab	in	your	browser.	You	are	now	Bob,	and	you	can	see	the
letter	of	credit	from	Alice:

In	this	process	example,	Bob	can	be	pretty	sure	that	Alice	is	trustworthy	because
his	bank	has	told	him	in	advance.	If	Bob	selects	the	letter,	he	will	be	shown	its
details:

Hopefully,	you're	starting	to	understand	the	process	now–so	let's	not	spell	out	all
the	details	again!	Just	note	how	Bob	has	increased	trust	because	of	the
transparency	available	to	him.	Bob	accepts	letter	as	payment	(Click	Accept),	and
now	has	to	ship	the	goods	to	Alice!

Step	6	–	shipment
You	will	be	returned	to	Bob's	initial	screen,	but	notice	that	now	there's	an	option
to	ship	the	goods	to	Alice:

Click	on	Ship	Order	to	indicate	that	the	goods	have	been	shipped	to	Alice:

Bob	can	now	see	that	as	far	as	the	letter	of	credit	process	is	concerned,	he	is
finished–the	order	has	been	shipped.

But	Bob	hasn't	yet	received	payment–Alice	must	receive	the	goods	first	before
this	can	happen.	Note	the	history	in	the	bottom	right	hand	corner	of	Bob's	web
page.	Bob	can	see	where	he	is	in	the	overall	process,	and	that	some	steps	need	to
be	completed	before	he	receives	payment:

Let's	return	to	Alice	to	continue	with	the	next	step	in	the	process.

Step	7	–	goods	received
Go	back	to	Alice's	tab	in	your	browser:

When	Alice	receives	the	computers	from	Bob,	she	can	click	on	Receive	Order	to
indicate	this,	and	review	the	letter	of	credit.	At	this	point,	both	banks	are	able	to
release	payment.	Let's	move	to	Matias's	web	page	to	see	this	process	step.

Step	8	–	payment
Matias	can	see	that	Alice	and	Bob	are	happy	and	that	payment	can	therefore	be
made.	Click	through	Matias's	initial	page	to	see	the	details	of	the	current	letter:

Matias	can	see	that	Alice	has	received	the	goods,	and	Matias	can	click	on	Ready
for	Payment	to	move	to	the	next	step	of	the	process.

Step	9	–	closing	the	letter
Ella	can	now	close	the	letter	and	make	the	payment	to	Bob:

As	Ella,	click	on	Close	to	move	to	the	final	step	of	the	process.

Step	10	–	Bob	receives	payment
If	we	move	back	to	Bob's	web	page	and	refresh	it,	we	can	see	that	Bob	has	some
good	news!	Check	out	his	increased	balance:

Bob	has	now	received	payment	for	the	computers	he	shipped	to	Alice.	The
business	process	is	complete.

Recapping	the	process
Alice	wanted	to	buy	computers	from	Bob,	and	used	the	letter	of	credit	process	to
facilitate	this	exchange.	She	bought	goods	in	dollars,	but	was	charged	in	Euros.
She	was	able	to	be	confident	that	the	goods	met	her	terms	and	conditions	before
she	paid	for	them.

Bob	sold	computers	to	Alice,	an	overseas	customer	he	didn't	previously	know.
The	letter	of	credit	process	allowed	him	to	be	confident	that	he	would	receive
payment	for	his	goods	in	his	local	currency,	US	dollars,	as	long	as	Alice	was
happy	with	the	goods.

Matias	and	Ella,	representatives	of	Dinero	Bank	and	Eastwood	Bank,
respectively,	provided	a	system	that	allowed	Alice	and	Bob	to	trust	that	each
would	fulfill	mutually	agreeable	conditions	in	order	to	receive	payment.	They
were	able	to	charge	Alice	and	Bob	a	fair	price	for	their	services.	They	were
aware	in	near	real-time	of	every	step	in	the	business	process.

Let's	now	see	how	this	process	was	implemented	using	Hyperledger	Composer
and	Hyperledger	Fabric.

Analyzing	the	letter	of	credit	process
At	the	core	of	the	business	network	is	a	business	network	definition	that
contains	the	formal	description	of	assets,	participants,	transactions,	and	events.
We're	going	to	examine	this	for	the	letter	of	credit	application.	By	the	end	of	this
chapter,	you'll	be	able	understand	how	the	network	is	implemented	and	accessed
by	the	application.	Moreover,	you'll	have	the	knowledge	to	build	your	own
network	and	applications	that	consume	it.

The	Playground
If	you	move	to	the	next	tab	in	the	demo,	you'll	find	the	Hyperledger	Composer
Playground	has	been	opened	for	you:

The	Playground	is	a	tool	that	will	allow	you	to	investigate	the	business	network.
The	initial	view	of	Playground	contains	a	wallet	full	of	business	network
cards.	Just	like	a	real	wallet,	these	cards	allow	you	to	connect	to	different
networks.	When	you	use	a	particular	card	to	connect	to	a	network,	you	act	as	a
different	participant.	This	is	useful	for	testing	the	network.	Let's	connect	to	the
network	as	an	administrator,	and	see	what's	in	it!	(We'll	create	our	own	network
card	later.)

Viewing	the	business	network
On	the	business	network	card	marked	admin@letters-credit-network,	click	Connect
now.	You'll	be	presented	with	a	web	page:

View	of	business	network	definition

This	is	a	view	of	the	business	network	definition.	It	contains	definitions	of	the
participants,	assets,	transactions,	and	events	we	discussed	in	Business	Networks	–
for	the	letter	of	credit	network.	On	the	left-hand	side	of	the	page	are	a	set	of	files
that	contain	information	relating	to	these	concepts	for	the	network	we're
connected	to.	We've	selected	About,	and	on	the	right-hand	side,	we	can	see	a
description	of	the	business	network.	Let's	investigate	this	description	in	a	little
detail–it's	really	important	to	understand.

A	description	of	the	business	network
The	READ.ME	file	contains	a	natural	language	description	of	the	network	in	terms	of
its	assets,	participants,	transactions,	and	events.

The	participant	descriptions
The	participants	are	listed	in	the	business	network	description:

Participants

	Customer,	BankEmployee

In	our	example,	there	are	four	participant	instances—Alice	and	Bob,	Matias	and
Ella.	But	notice	how	there	are	only	two	participant	types,	namely	Customer	and
Employee.	In	our	network,	Alice	and	Bob	are	participants	of	the	Customer	type,
whereas	Matias	and	Ella	are	participants	of	the	BankEmployee	type.	We	can	see	that
these	types	are	named	from	the	perspective	of	a	bank–that's	because	the	network
service	is	being	provided	by	the	Dinero	and	Eastwood	banks,	and	used	by	Alice
and	Bob.

We're	going	to	see	more	details	about	these	participant	types	and	the	particular
instances	in	the	network	soon.	But	for	now,	just	think	about	how	we've	reduced
the	actors	in	the	network	to	two	very	simple	representations.	Even	though	we
saw	a	rich	behavior	in	the	application,	in	terms	of	participants,	the	network	is
quite	simple.	You'll	see	this	in	business	networks–while	there	can	be	many
instances	of	participants,	the	number	of	types	is	usually	very	limited,	and	rarely
exceeds	10.	Of	course,	rules	are	made	to	be	broken,	but	you'll	find	it	helpful	to
think	of	networks	this	way–it	makes	the	analysis	much	more	manageable.

The	asset	descriptions
If	you	were	surprised	that	the	number	of	participant	types	is	small	in	this
business	network,	then	you're	going	to	amazed	when	you	see	the	number	of	asset
types:

Assets

	LetterOfCredit

Now,	this	is	a	sample	network–here	to	teach	us	about	the	concepts	of	business
networks,	rather	than	be	an	exhaustive	representation	of	the	world	of	letters	of
credit.	However,	if	you	think	about	our	example,	the	whole	flow	was	primarily
concerned	with	just	one	asset	type:	the	letter.

To	be	fair,	we	didn't	focus	on	the	goods	being	transferred–the	computers,	or	the
payment.	In	a	real	system,	these	would	described	as	assets.	Even	so,	notice	how
the	number	of	asset	types	would	still	be	relatively	small.	We	can	create	limitless
numbers	of	instances	of	letters	of	credit,	computers,	and	payments,	but	there	will
remain	only	a	few	types.

We'll	look	at	the	details	of	this	asset	type	a	little	later.

The	transaction	descriptions
Let's	now	move	to	the	transaction	types	in	the	business	network:

Transactions

	InitialApplication,	Approve,	Reject,	SuggestChanges,	ShipProduct,	ReceiveProduct,	

ReadyForPayment,	Close,	CreateDemoParticipants

At	last,	we	can	see	quite	a	few	types!	This	is	typical–while	the	numbers	of	the
types	of	participants	and	assets	is	quite	limited,	assets	have	rich	life	cycles.	If
you	think	about	our	application,	the	letter	of	credit	goes	through	many	states,	as
it	interacts	with	the	different	participants	in	the	network.	These	transactions
correspond	directly	to	those	interactions.	(Ignore	CreateDemoParticipants,	this	is	a
transaction	that	sets	up	the	demo!)

The	transaction	names	are	fairly	straightforward	to	understand–these	are	closely
related	to	the	letter's	life	cycle.	They	are	the	steps	you	went	through	using	the
application,	as	different	participants.	Alice	made	the	InitialApplication,	and	had
the	option	to	SuggestChanges	to	the	terms	and	conditions	of	the	letter.	Mattias	and
Ella	could	Approve	or	Reject	the	letter.	Bob	invoked	ShipProduct	to	indicate	that	he
had	performed	his	end	of	the	bargain,	and	Alice	used	ReceiveProduct	to	likewise
indicate	she	had	received	the	computers.	Finally,	Matias	indicated	that	the	letter
was	ReadyForPayment,	and	Ella	issued	the	Close	transaction	to	end	the	process	and
trigger	payment	to	Bob.

There's	no	reason	why	the	number	of	transaction	types	has	to	be	larger	than	the
number	of	types	of	assets.	One	could	easily	imagine	many	different	asset	types
that	had	the	same,	relatively	simple,	life	cycle.	Imagine	a	retailer's	product
inventory	for	example–goods	could	be	sourced,	delivered,	sold,	and	returned.
This	is	a	relatively	simple	life	cycle,	but	the	number	of	different	types	of	goods
could	be	quite	large.	However,	we	might	expect	these	different	goods	all	to	share
this	life	cycle	through	some	commonality	of	behavior;	after	all,	they	are	all
products.	There	will	be	more	on	this	idea	of	inheritance	later.

We'll	look	at	the	implementation	of	these	transactions	in	more	detail,	but	for
now,	it's	most	important	to	understand	the	conceptual	picture	of	asset	flow
between	the	participants	in	the	network,	as	described	by	transactions,	rather	than

worrying	about	the	exact	logic	behind	these	transactional	changes.

The	event	descriptions
Finally,	let's	look	at	the	list	of	events	in	the	business	network:

Events

	InitialApplicationEvent,	ApproveEvent,	RejectEvent,	SuggestChangesEvent,	

ShipProductEvent,	ReceiveProductEvent,	ReadyForPaymentEvent,	CloseEvent

We	can	see	that	the	events	have	names	matching	the	transaction	types,	and	this	is
typical.	These	are	explicit	events	that	are	generated	by	transactions	to	indicate
when	certain	events	occur	in	the	business	network.	In	our	scenario,	they	are	used
by	the	user	interfaces	to	keep	the	web	pages	up	to	date,	but	of	course	could	be
used	for	much	more	sophisticated	notification	processing,	for
example,	CloseEvent	could	be	used	to	trigger	payment	to	Bob.

When	you	first	define	a	business	network,	you'll	find	that	the	events	closely
mirror	the	transactions.	But,	over	time,	you'll	find	that	more	sophisticated
explicit	events	get	added,	for	example,	Matias	or	Ella	might	want	to	generate	a
specific	event	for	a	HighValue	letter,	or	a	LowRisk	application.

We'll	look	at	the	details	of	these	events	later.

A	model	of	the	business	network
Now	that	we've	understood	the	types	in	the	business	network	in	natural
language,	let's	see	how	they	are	defined	technically.	On	the	left-hand	side	of	the
Playground,	select	Model	File.

	In	this	business	network,	there	is	only	one	model	file	that	defines	the
participants,	assets,	transactions,	and	events.	In	a	bigger	application,	we'd	keep
the	information	from	different	organizations	in	their	own	files,	and	often	in	their
own	namespace.	It	allows	them	to	be	kept	separate	but	brought	together	when
necessary.	Let's	see	how	namespaces	work.

Namespaces
Our	example	uses	a	single	namespace:

namespace	org.acme.loc

This	namespaces	says	that	the	type	definitions	in	this	file	have	been	defined	by
the	Acme	organization's	letter	of	credit	process.	All	this	is	a	short	name!	Use
namespaces–they'll	help	you	clearly	separate,	and	more	importantly,
communicate,	your	ideas.	It	is	recommended	to	use	a	hierarchical	name	so	that
it's	clear	which	organizations	in	the	network	are	defining	the	relevant	types	being
used	by	the	network.

Enumerations
Next,	we	see	a	set	of	enumerated	types:

enum	LetterStatus	{

		o	AWAITING_APPROVAL

		o	APPROVED

		o	SHIPPED

		o	RECEIVED

		o	READY_FOR_PAYMENT

		o	CLOSED

		o	REJECTED

}

These	are	the	states	through	which	the	letter	is	going	to	transition.	When	we
access	a	letter,	we're	going	to	be	able	to	identify	where	the	business	process	is
using	this	enumeration.	All	the	names	are	fairly	self	explanatory.

Asset	definitions
We	now	come	to	the	first	really	significant	definition–the	letter	of	credit	asset:

	asset	LetterOfCredit	identified	by	letterId	{

			o	String	letterId

			-->	Customer	applicant

			-->	Customer	beneficiary

			-->	Bank	issuingBank

			-->	Bank	exportingBank

			o	Rule[]	rules

			o	ProductDetails	productDetails

			o	String	[]	evidence

			-->	Person	[]	approval

			o	LetterStatus	status

			o	String	closeReason	optional

	}

Let's	spend	a	little	time	on	this	definition,	as	it's	both	central	to	understanding	the
business	network,	and	Hyperledger	Composer	in	particular.

First,	note	the	asset	keyword.	It	indicates	that	what	follows	is	a	data	structure
that	describes	an	asset.	It's	just	like	a	type	definition	in	a	normal	programming
language,	but	with	some	special	characteristics	that	we'll	see	later.

We	can	see	that	the	asset	is	of	the	LetterOfCredit	type.	In	this	example,	we	only
have	one	asset	type–in	more	sophisticated	examples,	we'd	have	more	types	of
assets.	For	example,	we	could	extend	this	model	to	include	a	Shipment	asset,	and	a
Payment	asset:

asset	Shipment

asset	Payment	

For	now,	let's	skip	the	identified	by	clause,	moving	to	the	first	element	in	the
asset	definition:

o	String	letterId

The	letter	o	indicates	that	this	field	is	a	simple	attribute	of	the	asset.	It's	a
slightly	strange	way	of	indicating	this,	so	just	think	of	it	as	a	decoration.	This
first	attribute	is	the	letterId.	Recall	that	when	a	letter	is	created	in	the	business
network,	a	unique	ID	is	assigned	to	it.	If	you	recall,	in	our	example,	we	had

letterId	L64516AM	or	L74812PM.	This	is	indicated	by	the	field	having
the	String	type–lots	of	types	are	available,	as	we'll	see.	We	can	see	that	this
definition	allows	us	to	associate	a	human-readable	identifier	with	the	asset.	Note
that	this	must	be	a	unique	identifier!

Let's	now	return	to	the	identified	by	clause:

identified	by	letterId

Now	we	can	understand	that	this	indicates	that	the	letterId	attribute	is	the	one	by
which	the	asset	is	uniquely	identified.	It's	a	simple	but	powerful	idea	that	relates
closely	to	the	real-world.	For	example,	a	car	might	have	a	Vehicle	Identification
Number	(VIN)	that	uniquely	identifies	it.

Let's	move	to	the	next	attribute:

-->	Customer	applicant

The	first	thing	we	notice	is	the	-->	decorator!	(Type	it	as	two	dashes	and	a	greater
than	symbol	on	your	keyboard).	This	is	a	reference	attribute–it	points	to
something!	In	the	case	of	a	letter,	it	points	to	a	different	type,	Customer,	and	the
name	of	this	element	is	applicant.	See	how	the	reference	concept	is	a	little	more
complex	than	the	simple	attribute	we	saw	earlier–that's	because	it	does	more
work.	This	field	is	saying	that	the	letter	has	an	applicant	which	is	of
the	Customer	type,	and	that	you	need	to	look	it	up	via	this	reference.

In	our	example,	an	instance	of	a	letter	will	point	to	Alice,	as	she's	a	customer	of
Dinero	Bank	who	makes	an	application.	Notice	that	this	a	reference	attribute
refers	to	a	different	object	in	the	business	network.	This	idea	of	a	reference	is
very	powerful–it	allows	assets	to	point	to	other	assets,	as	well	as	participants,
and	the	same	for	participants.	With	references,	we're	able	to	represent	the	rich
structures	that	we	see	in	the	world.	It	means	that	we	can	create	assets	that	can	be
combined	and	divided,	and	the	same	is	possible	for	participants.	In	our	example,
we	use	the	reference	to	see	who	has	applied	for	a	letter	by	navigating	the
reference.	Again,	we	can	see	that	this	model	is	very	bank-centric.	We'll	see	later
that	Customer	is	in	fact	a	participant,	and	we'll	see	how	participants,	such	as	Alice,
are	defined.	But	for	now,	let's	stay	with	the	asset	definition.

As	we	discussed	in	Business	Networks,	our	application	uses	a	simple	way	of

modeling	ownership–in	the	real-world,	it	is	often	an	associative	reference.	We
could	most	easily	model	this	more	sophisticated	associative	relationship	as	an
OwnershipRecord,	which	pointed	to	an	asset	and	pointed	to	a	participant	if	we
wished	to	do	so:

asset	OwnershipRecord	identified	by	recordId	{

			o	String	recordId

			-->	LetterOfCredit	letter

			-->	Customer	letterOwner

We	can	instantly	see	the	power	of	this	approach.	We're	able	to	model	the
relationships	that	exist	in	the	real-world,	making	our	applications	more	realistic
and	therefore	easier	to	use.	For	our	purposes,	our	current	model	is	perfectly
adequate.

Let's	move	to	the	next	field:

-->	Customer	beneficiary

This	is	a	very	similar	field	to	the	previous	one,	and	in	our	example,	an	instance
of	this	element	would	be	Bob.	There's	no	need	to	spend	time	on	this	definition.
It's	important,	of	course,	but	it	just	points	the	letter	at	Bob.	If	you	recall,	our
application	always	has	the	two	counterparties	associated	with	a	letter.

The	next	two	fields	have	a	similar	structure,	but	we're	going	to	spend	a	little
more	time	discussing	them:

-->	Bank	issuingBank

-->	Bank	exportingBank

We	can	see	that	these	fields	are	also	references	to	other	objects,	and	we	might
suspect	they	are	participants,	given	their	names–issuingBank	and	exportingBank!
Examples	instances	of	these	types	are	Dinero	Bank	and	Eastwood	Bank,	who
act	on	behalf	of	Alice	and	Bob,	respectively.

With	these	first	four	reference	fields,	we've	modeled	the	very	rich	structure	of
the	asset.	We've	shown	that	a	letter	of	credit	really	has	four	participants	involved
in	it.	We've	given	them	symbolic	names	and	types,	and	shown	how	they	relate	to
the	asset.	Moreover,	we've	done	it	without	writing	any	code.	We're	going	to	have
to	do	that	a	little	later,	but	for	now,	notice	how	we've	captured	the	fundamental
nature	of	a	letter	of	credit	in	our	model.	It's	worth	spending	a	little	time	really

understanding	this	point.

We're	only	going	to	consider	one	more	field	in	the	asset	definition	because
hopefully	you're	getting	the	hang	of	this!	It's	an	important	field:

o	LetterStatus	status

Remember	those	ENUMs	that	were	defined	right	at	the	top	of	the	file?	Good!
This	is	the	field	that's	going	to	contain	those	different	values,	such	as
AWAITING_APPROVAL	or	READY_FOR_PAYMENT.	You're	often,	if	not	always,	going	to	have
fields	and	enumerations	like	this	in	your	business	network,	because	they	capture
in	a	very	simple	form	where	you	are	in	the	business	process	you're	modeling.	If
you're	comfortable	with	workflows	or	finite	state	machines,	you	might	like	to
think	of	these	as	states–they	are	a	very	important	idea.

Participant	definitions
We	now	move	to	the	next	set	of	definitions	in	the	model	file:	the	participants!

Let's	have	a	look	at	the	first	participant	definition:

participant	Bank	identified	by	bankID	{

		o	String	bankID

		o	String	name

}

This	is	our	first	participant	type	definition,	a	bank.	In	the	sample	application,	we
have	two	instances	of	this	type:	Dinero	Bank	and	Eastwood	Bank.

We	can	see	that	participants	are	identified	by	the	participant	keyword,	after	which
follows	the	type	name–Bank.	In	this	case,	a	participant	type	is	an	organization,
rather	than	an	individual.	As	with	assets,	every	participant	has	a	unique	ID	for
identification,	and	we	can	see	that	for	banks,	it's	the	bankID	field:

participant	Bank	identified	by	bankID

For	our	example,	a	bank	has	been	modeled	very	simply–just	a	bankID	and	a	name,
both	of	which	are	strings:

String	bankID

String	name

We	can	see	that	banks	really	are	much	simpler	than	letters.	It's	not	just	that	they
have	fewer	fields	with	simpler	types.	More	importantly,	they	don't	refer	to	any
other	participants	or	assets–that's	what	makes	them	simple–a	lack	of	references,
a	simple	structure.	Your	models	will	be	like	this	too–some	assets	and	participants
will	have	a	relatively	simple	structure,	whereas	others	will	have	much	more,
including	references	to	other	assets	and	participants.

Recall	that	these	types	were	referred	to	from	the	asset	definition.	If	you	need	to
do	so,	look	at	the	letter	type	definition	again	to	see	the	references:

-->	Bank	issuingBank

-->	Bank	exportingBank

Can	you	see	how	the	letter	asset	and	bank	participants	are	related	now?	Great!

Let's	now	look	at	the	next	type	of	participant.	It's	a	little	different	to	what	we've
seen	before,	and	for	now,	ignore	the	abstract	keyword:

abstract	participant	Person	identified	by	personId	{

		o	String	personId

		o	String	name

		o	String	lastName	optional

		-->	Bank	bank

}

It	feels	like	we	have	four	instances	of	the	Person	type	in	our	application–Alice	and
Bob,	Matias	and	Ella!	Let's	have	a	look	at	how	individual	participants	are
defined:

abstract	participant	Person	identified	by	personId

Again,	ignore	the	abstract	keyword.	This	statement	defines	the	participant	of
the	Person	type	that	is	identified	by	a	unique	field	in	its	type	definition.	These
types	are	going	to	be	the	individual	participants	in	our	application,	rather	than
the	organizations	(that	is,	banks)	that	we	defined	earlier.	(We	might	expect	that
Bank	and	Person	will	be	structurally	related–we'll	see	later!)

If	we	look	at	the	definition	in	a	little	more	detail,	we	can	see	their	structure	is	a
little	more	interesting	than	bank:

o	String	personId

o	String	name

o	String	lastName	optional

-->	Bank	bank

We	can	see	that	Person	also	has	a	name	and	a	last	name.	But	notice	that	the	last
name	is	optional:

o	String	lastName	optional

We	can	see	that	the	optional	keyword	indicates	that	lastName	may	or	not	be	present.
You	may	recall	in	our	example	that	Alice	and	Bob	provided	surnames	(Hamilton
and	Appleton),	but	the	banks'	employees,	Matias	and	Ella,	did	not.	This
optionality	has	been	modeled–see	how	it	helps	us	make	our	applications	more
like	the	real-world.

However,	the	most	important	field	is	the	next	one:

	-->	Bank	bank

Why?	It	reveals	structure.	We	can	see	that	a	person	is	related	to	a	bank.	In	the
case	of	Alice	and	Bob,	it's	the	bank	they	have	accounts	with.	In	the	case	of
Matias	and	Bob,	it's	their	employer.	We'll	come	back	to	whether	this	is	actually
the	right	place	to	model	this	relationship,	but	for	the	moment,	what's	important	is
that	we	have	an	individual	participant	that	has	a	relationship	with	an
organizational	participant.	You	can	see	that	it's	not	just	assets	that	have	complex
structure–participants	can	have	them	too!

But	hold	on,	it's	not	quite	that	simple.	We	skipped	something	in	the	definition,
didn't	we?	See	the	following:

abstract	participant	Person	identified	by	personId	{	

The	abstract	keyword	almost	totally	destroys	everything	we've	just	said	about
Person	types!	The	abstract	types	are	special	because	they	cannot	have	instances.
Really?	That's	seems	counter-intuitive,	given	we	can	see	Alice	and	Bob,	and
Matias	and	Ella.	

To	understand	what's	happening,	we	need	to	move	to	the	next	participant
definition:

participant	Customer	extends	Person	{

			o	String	companyName

}

Look	carefully	at	the	first	line	of	this	definition:

participant	Customer	extends	Person	{

	We	can	see	that	we've	defined	a	special	type	of	Person	called	a	Customer!	That's
better	than	before,	because	Alice	and	Bob	are	Customers.	We	don't	actually	have
instances	of	Person	participants	in	our	application–we	have	instances	of	Customer
types.

We	can	see	now	that	the	extends	keyword	in	the	Customer	type	definition	is	paired
with	the	abstract	keyword	in	the	Person	type	definition.	They	are	part	of	this
bigger	idea	of	the	type	specialization	and	inheritance	that	we	referred	to	earlier:

abstract	participant	Person

participant	Customer	extends	Person	

It's	the	abstract	keyword	that	stops	us	defining	instances	of	Person!	That's
important,	because	in	our	example,	it's	actually	correct–there	are	no	instances	of
the	Person	type,	only	instances	of	the	Customer	type.

We	can	see	that	a	Customer	has	one	extra	attribute	when	extending	a	Person	type,
their	company	name:

o	String	companyName

In	the	case	of	Alice,	this	will	be	QuickFix	IT,	and	for	Bob,	it	will	be	Conga
Computers.

Finally,	let's	look	at	the	last	participant	type,	BankEmployee:

participant	BankEmployee	extends	Person	{

}

We	don't	need	to	describe	this	in	detail–you	can	see	that,	such
as	Customer,	BankEmployee	extends	the	Person	type,	but	unlike	it,	it	does	not	add	any
extra	attributes.	That's	OK!	In	our	application,	Matias	and	Ella	are	instances	of
this	type.

We	can	now	see	why	the	Person	type	is	helpful.	It's	not	just	that	it	cannot	be
instantiated,	it's	also	that	it	captures	what's	common	between	Customer
and	BankEmployee.	It	doesn't	just	save	typing–it	reveals	an	inner	structure	that
improves	and	reflects	our	understanding	of	the	business	network.

Bearing	this	in	mind,	you	might	like	to	consider	whether	it	might	be	slightly
more	realistic	to	model	as	follows:

abstract	participant	Person	identified	by	personId	{

			o	String	personId

			o	String	name

			o	String	lastName	optional

}

	

participant	Customer	extends	Person	{

			o	String	companyName

			-->	Bank	customerBank

}

	

participant	BankEmployee	extends	Person	{

			-->	Bank	employeeBank

}

In	real-life	scenarios,	the	actual	participant	identity	will	be	stored	outside	the	model.	This	is
due	to	the	fact	that	personal	identity	and	immutable	ledgers	are	not	a	good	combo.		Storing
Alice's	personal	information	on	the	ledger	means	that	it	will	be	there	forever.

Can	you	see	how	this	model	shows	that	the	nature	of	the	bank	relationship	is
different	for	Customer	than	it	is	for	BankEmployee?

There's	an	important	point	here–there	is	no	such	thing	as	a	correct	model.
Models	merely	serve	a	purpose–they	are	either	sufficient	or	insufficient.	Both	of
our	models	are	perfectly	sufficient	for	our	purposes	because	we	don't	need	to
make	a	distinction	between	Customers	and	BankEmployees	in	terms	of	their
relationship	to	a	bank.

OK,	that's	enough	on	participants.	Let's	move	on	to	the	next	element	in	the
model	definition.

Concept	definitions
Look	at	ProductDetail	rather	than	Rule,	as	it's	a	little	easier	to	understand,	initially:

concept	ProductDetails	{

			o	String	productType

			o	Integer	quantity

			o	Double	pricePerUnit

}

Concepts	are	minor,	but	helpful	elements,	in	the	model.	They	are	neither	assets
nor	participants–they	merely	define	the	structural	elements	contained	within
them.

This	preceding	concept	defines	ProductDetail.	We	might	argue	that	this	is	in	fact
an	asset–for	the	purposes	of	our	application,	it's	not	something	that	gets
transferred	between	participants!	It's	maybe	a	little	clearer	when	we	look	at	the
Rule	concept,	which	captures	the	terms	and	conditions	of	the	letter	of	credit:

concept	Rule	{

			o	String	ruleId

			o	String	ruleText

}

This	is	something	that	is	less	like	an	asset	or	a	participant,	but	it	is	helpful	to
have	as	a	separate	type,	as	it	reveals	an	important	structure.

Transaction	definitions
Let's	move	on!	The	next	section	is	really	important–the	transactions!	Let's	start
by	looking	the	first	transaction	definition:

transaction	InitialApplication	{

			o	String	letterId

			-->	Customer	applicant

			-->	Customer	beneficiary

			o	Rule[]	rules

			o	ProductDetails	productDetails

}

We	can	see	that	like	assets	and	participants,	transactions	are	defined	with	their
own	keyword:

transaction	InitialApplication	{

The	transaction	keyword	identifies	that	what	follows	is	a	type	definition	for	a
transaction.	It's	just	like	the	asset	or	participant	keywords.	Notice	that	there	isn't
an	identified	by	clause	in	the	transaction	definition.

This	transaction	definition	represents	the	initial	application	made	by	Alice	for
the	letter	of	credit.	It's	quite	obvious	really,	isn't	it?	A	particular	instance	of	a
transaction	would	be	created	by	the	application	that	Alice	uses,	and	we	can	see
the	information	contained	within	it:

o	String	letterId

-->	Customer	applicant

-->	Customer	beneficiary

o	Rule[]	rules

o	ProductDetails	productDetails

If	you	look	back	at	Alice's	web	page,	then	you'll	see	all	this	information:	the
applicant	Alice,	the	beneficiary	Bob,	the	terms	and	conditions	(rules),	and	the
product	details.	Notice	that	the	applicant	and	beneficiary	are	references	to
participants,	whereas	the	rules	and	product	details	are	concepts.

We	can	see	that	the	transaction	has	a	relatively	simple	structure	but	powerfully
captures	the	intention	of	an	applicant	(for	example,	Alice)	to	apply	for	a	letter	of
credit	to	do	business	with	a	beneficiary	(for	example,	Bob).

Event	definitions
Look	at	the	next	definition	in	the	model	file:

event	InitialApplicationEvent	{

			-->	LetterOfCredit	loc

}

It's	an	event!	You'll	often	see	this–an	event	definition	immediately	next	to	a
transaction	of	the	same	name.	That's	because	this	is	really	an	external	event–it's
simply	capturing	the	applicant	applying	for	a	letter	of	credit.	It	simply	points	to
the	letter	that	generated	the	event.	In	the	application,	it's	simply	used	to	keep	the
UI	up-to-date,	but	in	general,	all	kinds	of	processing	could	be	triggered	by	this
initial	application.

Continue	to	look	through	the	model	file,	and	you'll	see	transactions	and	events
defined	for	every	step	of	the	process,	and	sometimes	extra	attributes	relevant	to
that	transaction	step.	Spend	a	little	time	looking	at	these–they	are	interesting!

As	we've	seen,	it's	also	possible	to	declare	more	explicit	events,	such	as	a	high
value	letter,	or	a	low-risk	application.	Imagine	our	application	doing	this	with	the
following	events:

event	highValueLetterEvent	{

			-->	LetterOfCredit	loc

}

	

	event	lowRiskLetterEvent	{

			-->	LetterOfCredit	loc

}

Which	transactions	in	the	model	file	do	you	think	these	would	be	associated
with?	

To	determine	this,	we	need	to	think	about	the	process–a	high-value	letter	is
known	about	immediately	after	application,	so	it	would	be	associated	with	the
InitialApplication	transaction.	However,	until	the	transaction	has	been	initially
processed	by	the	both	banks,	and	both	applicant	and	beneficiary	assessed,	it's
hard	to	say	that	the	letter	is	low	risk.	It	means	that	this	event	would	be	more
closely	associated	with	the	Approve	transaction.

Moreover,	in	this	higher	resolution	scenario,	we	would	consider	creating
separate	transactions	for	importer	bank	approval	and	exporter	bank	approval,
ImportBankApproval	and	ExportBankApproval.

Examining	the	live	network
Great–now	that	we've	seen	how	the	types	of	participants,	assets,	transactions,
and	events	are	defined	in	the	business	network,	let's	see	how	instances	of	these
types	are	created.	The	Playground	tool	has	another	feature	that	is	very	nice–it
allows	us	to	look	inside	the	business	network,	while	it's	running,	to	see	instances
of	these	types,	and	select	the	Test	tab	at	the	top	of	the	Playground	page:

You'll	see	that	the	view	has	changed	a	little.	On	the	left-hand	side,	we	can	see	the
participants,	assets,	and	transactions	that	have	been	defined	for	this	business
network:	Bank,	BankEmployee,	Customer,	and	LetterOfCredit,	as	well	as	transactions.	You
can	select	these,	and	as	you	do,	you'll	see	that	the	right-hand	pane	changes.	Try
it!

Select	the	LetterOfCredit	asset,	and	on	the	right-hand	pane,	you'll	see	the	following
(expand	the	view	with	Show	All):

Wow–this	is	interesting!	This	is	an	actual	letter	of	credit	from	our	application.
Let's	have	a	look	at	the	letter	in	detail,	and	how	it	maps	to	the	type	structure	we
examined	earlier.

Examining	a	letter	of	credit	instance
We	can	see	the	ID,	L73021	AM,	and	the	instance	information.	It's	shown	as	a	JSON
document,	and	you	can	see	that	the	structure	mirrors	that	in	the	LetterOfCredit
definition,	but	it	has	real	instance	data	in	it.

You	can	see	that	every	asset	and	participant	contained	within	the	letter	has	a
class	($class),	which	is	formed	from	the	namespace	concatenated	with	the	type
name.	For	example:

"$class":	"org.example.loc.LetterOfCredit"

"$class":	"org.example.loc.ProductDetails"

Notice	also	how	the	information	for	this	letter	has	been	captured:

"letterId":	"L73021	AM"

"productType":	"Computer"

"quantity":	"1250"

Finally,	notice	how	the	letter	is	in	its	final	state:

"status":	"CLOSED"

"closeReason":	"Letter	has	been	completed."

All	of	this	data	is	incredibly	powerful.	Why?	Because	the	type	and	instance
information	is	kept	together,	just	like	in	a	real	contract,	it	can	be	properly
interpreted	after	it's	been	written.	You	can	imagine	how	helpful	that	is	for
analytics	tools	who	like	to	look	for	patterns	in	the	data!

For	reference	attributes,	we	can	see	that	the	structure	is	a	little	different:

"applicant":	"resource:org.example.loc.Customer#alice"

"beneficiary":	"resource:org.example.loc.Customer#bob"

"issuingBank":	"resource:org.example.loc.Bank#BOD"

"exportingBank":	"resource:org.example.loc.Bank#ED"

We	can	see	that	these	attributes	are	references	to	participants,	and	if	we	click	on
the	Participant	tab,	we're	able	to	see	them!	Click	on	the	Bank	tab:

Examining	participant	instances
You	can	see	the	two	banks	in	our	network,	their	type,	and	instance	information!
Click	on	the	different	participant	and	asset	tabs,	and	inspect	the	data	to	see	how
the	types	have	become	instantiated	in	the	scenario.	Spend	time	on	this–it's
important	that	you	understand	this	information,	link	it	to	types,	and	really	think
about	how	it	relates	to	the	business	network.	Don't	be	deceived–the	information
looks	simple–there	are	some	powerful	ideas	in	here	that	will	take	a	little	time	to
connect.	However,	we	encourage	you	to	do	this–it's	really	worth	understanding
how	everything	links	together,	so	that	you	can	do	the	same!

Examining	transaction	instances
Now	click	on	the	All	Transactions	tab:

You	can	see	the	full	transaction	life	cycle	of	our	application	run-through.	(Your
times	may	be	a	little	different!)	If	you	scroll	through	the	transactions,	you	can
see	exactly	what	happened	in	our	scenario–Alice	applied	for	a	letter,	Matias
approved	it,	and	so	on.	If	you	click	on	view	record,	you'll	be	able	to	see	the
details	of	an	individual	transaction.

For	example,	let's	look	at	the	InitialApplication	made	by	Alice:

We	can	see	the	transaction	details	(we've	edited	them	slightly	to	fit	the	page):

"$class":	"org.example.loc.InitialApplication",

"letterId":	"L73021	AM",

"applicant":	"resource:org.example.loc.Customer#alice",

"beneficiary":	"resource:org.example.loc.Customer#bob",

"transactionId":	"c79247f7f713006a3b4bc762e262a916fa836d9f59740b5c28d9896de7ccd1bd",

"timestamp":	"2018-06-02T06:30:21.544Z"

Notice	how	we	can	see	the	exact	details	of	this	transaction!	Again,	incredibly
powerful!	Spend	some	time	looking	at	the	transaction	records	in	this	view.

Submitting	a	new	transaction	to	the
network
There's	a	lot	more	we	can	do	with	the	Playground;	we're	now	going	to	interact
with	the	business	network	dynamically!

Ensure	that	you've	selected	the	LetterOfCredit	asset	type	in	the	Test	view.	Notice
the	Submit	Transaction	button	on	the	left-hand	pane:

We're	going	to	interact	with	the	business	network	by	submitting	a	new
LetterOfCredit	application.	If	you	press	Submit	Transaction,	you'll	be	presented
with	the	following	entry	box:

In	the	Transaction	Type	dropdown,	you'll	see	all	the	possible	transactions	listed.
Select	InitialApplication	and	replace	the	JSON	Data	Preview	with	the	following
data:

{

			"$class":	"org.example.loc.InitialApplication",

			"letterId":	"LPLAYGROUND",

			"applicant":	"resource:org.example.loc.Customer#alice",

			"beneficiary":	"resource:org.example.loc.Customer#bob",

			"rules":	[

					{

							"$class":	"org.example.loc.Rule",

							"ruleId":	"rule1",

							"ruleText":	"This	is	a	test	rule."

					}

],

			"productDetails":	{

					"$class":	"org.example.loc.ProductDetails",

					"productType":	"Monitor",

					"quantity":	42,

					"pricePerUnit":	500

			}

	}

Can	you	see	what	this	transaction	describes?	Can	you	see	the	new	LetterId

between	Alice	and	Bob	as	Customer	and	Beneficiary?	Can	you	see	the	ProductDetails,
Quantity,	and	Price?

If	you	press	Submit,	you'll	see	that	you're	returned	to	the	main	view,	and	that	a
new	letter	has	been	created:

Congratulations,	you've	just	submitted	a	new	application	for	a	letter	of	credit!
But	wait!	If	we've	interacted	with	the	live	network,	then	what	happens	if	we
return	to	our	application	view.	If	you	got	back	to	Alice's	view,	you'll	notice	that
she	has	a	new	letter:

The	Hyperledger	Composer	Playground	has	allowed	us	to	interact	with	the	live
business	network!	Moreover,	if	we	select	Matias's	page,	we	can	see	the	letter	is
waiting	for	approval:

Notice	all	the	attributes	are	those	that	you	entered	in	the	sample	transaction!	You
can	now	use	the	Playground	to	move	this	letter	through	its	full	life	cycle.	We
recommend	that	you	spend	some	time	doing	this–it	will	help	you	solidify	your
knowledge.

Understanding	how	transactions	are
implemented
This	is	all	very	impressive,	but	how	does	it	work–where's	the	logic	that
implements	these	transactions	that	manipulate	participants	and	assets,	and
creates	events?	To	understand	this,	we	need	to	look	at	the	transaction
programs–the	code	that	runs	when	transaction	are	submitted	to	the	network	that
refer	to	these	assets,	participants,	and	events.

The	transaction	code	is	held	in	a	Script	File,	and	if	you	select	Script	File	on	the
Define	tab,	you'll	see	the	following:

This	is	the	code	that	implements	transactions!	Today,	Hyperledger	Composer
uses	JavaScript	to	implement	these	functions,	and	that's	what	you're	looking	at
on	this	page–JavaScript.	If	you	page	through	the	script	file,	you'll	see	that	there's
a	function	for	every	transaction	defined	in	the	model	file.

	Let's	examine	one	of	the	transactions	we've	been	playing	with	up	to	this

point–the	InitialApplication	transaction.	Notice	how	the	function	starts:

/**

		*	Create	the	LOC	asset

		*	@param	{org.example.loc.InitialApplication}	initalAppliation	-	the	

InitialApplication	transaction

		*	@transaction

		*/

	async	function	initialApplication(application)	{

The	comments	and	the	first	line	of	program	code	are	effectively	saying	the
following	function	implements	the	InitialApplication	transaction,	which	takes	an
org.example.loc.InitialApplication	type,	and	assigns	it	to	the	locally-
scoped	application	variable.	In	a	nutshell,	it	connects	program	logic	to	the
transaction	definition	we	saw	in	the	model	file.

The	first	important	line	of	code	is	the	following:

const	letter	=	factory.newResource(namespace,	'LetterOfCredit',	application.letterId);

factory.newResource()	creates	a	new	local	LetterOfCredit	in	the	org.example.loc
namespace,	using	the	identifier	supplied	by	the	caller	of	the	function	in	the
input	application.letterId	transaction	variable.	This	statement	assigns	the	result	of
this	function	to	a	local	letter	variable.

It's	important	to	understand	that	this	statement	has	not	created	a	letter	in	the
business	network;	factory.newResource()	merely	creates	a	correctly	shaped
JavaScript	object	that	can	now	be	manipulated	by	the	following	subsequent
logic,	and	after	it	is	properly	formed	using	the	input	provided	by	the	caller	(for
example,	the	application	being	used	by	Alice),	it	can	be	added	to	the	business
network!
	
Notice	how	applicant	and	beneficiary	are	assigned:

letter.applicant	=	factory.newRelationship(namespace,	'Customer',	

application.applicant.getIdentifier());

letter.beneficiary	=	factory.newRelationship(namespace,	'Customer',	

application.beneficiary.getIdentifier());

The	transaction	makes	sure	that	Alice	and	Bob's	identifiers	are	placed	correctly
in	the	letter.	In	our	network,	application.applicant.getIdentifier()	would	resolve	to
resource:org.example.loc.Customer#alice	or	resource:org.example.loc.Customer#bob.	The
transaction	logic	systematically	constructs	the	letter	of	credit	using	the	supplied

input	and	information	already	stored	in	the	business	network.

Next,	notice	how	issuingBank	and	exportingBank	navigate	via	the	participant	to	their
bank.	The	program	logic	is	navigating	the	references	in	the	participant	and	asset
definitions	to	do	this:

letter.issuingBank	=	factory.newRelationship(namespace,	'Bank',	

application.applicant.bank.getIdentifier());

letter.exportingBank	=	factory.newRelationship(namespace,	'Bank',	

application.beneficiary.bank.getIdentifier());

We	can	see	in	these	statements	how	the	transaction	has	to	use	the	structure	that
was	defined	in	the	model.	It	can	add	any	proprietary	business	logic	to	do	this,
but	it	must	conform	to	this	structure.	Examine	each	line	that	assigns	to	letter	and
see	whether	you	can	understand	what's	happening	in	these	terms.	It	takes	a	little
getting	used	to,	but	it's	really	important	to	understand	this–the	transaction	is
transforming	the	business	network	from	one	state	to	another	using	this	logic.

Notice	the	last	statement	of	the	letter	assignment:

letter.status	=	'AWAITING_APPROVAL';

See	how	the	enum	types	are	being	used	to	set	the	initial	state	of	the	letter.	

The	next	really	important	statement	in	the	function	is	the	following:

	await	assetRegistry.add(letter);

This	now	adds	the	letter	to	the	business	network!	At	this	point,	we	have	created	a
new	application	for	a	letter	of	credit	in	the	business	network.	The	letter	we
created	in	local	storage	has	been	sent	to	the	network,	and	is	now	a	live	asset	that
points	to	the	participants	and	assets	in	the	network.

Finally,	we	emit	an	event	to	signify	that	the	transaction	has	taken	place:

const	applicationEvent	=	factory.newEvent(namespace,	'InitialApplicationEvent');

applicationEvent.loc	=	letter;

emit(applicationEvent);

As	with	the	letter,	we	create	a	local	event	of	the	right	shape–an
InitialApplicationEvent,	complete	its	details,	and	emit()	it.	Examine	the	different
transactions	and	their	logic	to	become	comfortable	with	the	precise	processing	of

each	transaction–you'll	be	richly	rewarded	for	this	effort.

Creating	business	network	APIs
For	the	final	part	of	this	chapter,	we're	going	to	show	you	how	your	application
can	interact	with	these	transaction	functions	in	business	networks	using	APIs.
The	sample	application	and	the	Playground	both	interact	with	the	business
network	using	APIs.
Indeed,	you	can	see	that	from	a	service	consumer's	perspective,	neither	Alice,
Bob,	Matias,	nor	Ella	were	aware	of	the	blockchain–they	just	interacted	with
some	user	interfaces	that	resulted	in	these	transaction	functions	(or	similar)
being	executed	to	manipulate	the	business	network	according	to	the	business
logic	encoded	in	these	transaction	processing	functions.

It's	these	user	interfaces	and	applications	that	use	APIs	to	interact	with	the
business	network.	If	you're	new	to	APIs,	then	you	can	read	about	them	here.
Although	more	technically	accurate,	few	people	use	the	term	Web	API–it's	just
API:

Let's	have	a	look	at	the	APIs	for	our	business	network!	If	you	select	the	final	tab
in	the	demo,	you'll	see	the	following	page:

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction

This	is	the	Hyperledger	Composer	REST	server.	It	is	a	server	that's	exposing	the
APIs	in	our	business	network.	These	APIs	are	described	using	a	standard
SWAGGER	format.

SWAGGER	API	definitions
SWAGGER	is	an	open	standard	for	describing	APIs–https://swagger.io/specificatio
n/	These	APIs	have	been	generated	by	Hyperledger	Composer	using	the	same
vocabulary	as	defined	in	the	model	to	describe	the	participants,	applications,	and
transactions	that	were	defined	for	this	business	network!	It	means	that	the
SWAGGER	APIs	have	obvious	meaning	to	both	the	business	and	technical	user.

For	every	type	of	participant,	asset,	and	transaction	in	the	business	network,
there	is	an	API	for	it.

https://swagger.io/specification/

Querying	the	network	using
SWAGGER
Select	one	of	these	APIs	LetterOfCredit:

Notice	the	GET	and	POST	verbs	for	this	API.	Most	modern	APIs	are	defined	using
REST	and	JSON,	and	that's	what	you	see	here.	Practice	expanding	and
collapsing	the	views	to	see	all	the	different	options.

When	you're	happy,	select	InitialApplication	GET:

Just	like	with	Playground,	you're	able	to	interact	with	the	business	network	using
the	same	APIs	as	applications.	It's	quite	a	bit	more	technical	as	a	view,	but	that's
OK–as	a	programmer,	you	should	feel	comfortable	with	this.

The	API	we've	selected	allows	a	program	to	query	(GET)	all	the	letters	in	a
business	network.	If	you	select	Try	it	out!,	you'll	see	the	following	response:

This	details	show	you	the	exact	API	that	was	issued.	It	was	a	GET	request	on	the
http://localhost:3000/api/LetterOfCredit	URL,	and	the	response	body	shows	the	data
that	was	returned.	You	should	be	able	to	see	that	it's	very	similar	in	structure	to

the	Playground	data,	and	if	you	scroll	through	the	response,	you'll	see	the	two
letters	in	the	network.

Testing	the	network	from	the
command	line
You	can	also	interact	with	the	network	from	a	terminal	using	the	curl	command,
and	the	syntax	is	shown	for	you:

curl	-X	GET	--header	'Accept:	application/json'	

'http://localhost:3000/api/LetterOfCredit'

Try	this	out	in	a	terminal,	and	you'll	see	the	data	on	the	command	line:

It's	a	lot	less	beautiful	than	the	Playground	or	SWAGGER	view,	but	if	you're	a
programmer,	you	know	how	powerful	this	is!	Think	about	how	this	can	help
with	automated	testing,	for	example.

Creating	a	new	letter	using
SWAGGER
We	can	also	create	a	new	application	for	a	letter	of	credit	from	the	SWAGGER
view.	Select	the	InitialApplication	API.

We're	going	to	use	the	POST	verb	to	create	yet	another	application	for	Alice:

In	the	value	box,	paste	the	following	data:

{

		"$class":	"org.example.loc.InitialApplication",

		"letterId":	"LPLAYGROUND2",

		"applicant":	"resource:org.example.loc.Customer#alice",

		"beneficiary":	"resource:org.example.loc.Customer#bob",

		"rules":	[

			{

				"$class":	"org.example.loc.Rule",

				"ruleId":	"rule1",

				"ruleText":	"This	is	a	test	rule."

			}

],

		"productDetails":	{

			"$class":	"org.example.loc.ProductDetails",

			"productType":	"Mouse	Mat",

			"quantity":	40000,

			"pricePerUnit":	5

		}

	}

Can	you	see	what	this	application	is	for?	Can	you	see	how	Alice	wants	to	apply
for	a	letter	to	buy	40000	Mouse	mats	from	Bob	at	5	dollars	each?

If	you	press	Try	it	out!,	a	new	letter	will	be	created!	You	can	now	view	this	new
letter	using	the	SWAGGER	console,	the	application,	or	the	Playground.	Let's	try
each:

This	is	the	view	using	SWAGGER:

This	is	the	view	using	the	Playground:

This	is	the	view	using	the	application	(Matias's	view):

Network	cards	and	wallets
Finally,	before	we	finish	this	chapter,	we're	going	to	add	you	to	this	business
network	so	that	you	can	submit	transactions!	To	do	this,	we're	going	to	return	to
the	business	network	cards	and	wallet	that	first	allowed	us	to	connect	to	the
network.	Recall	that	all	applications,	Playground	included,	have	a	wallet	that
contains	business	network	cards	that	can	be	used	to	connect	to	different
networks.	When	an	application	uses	a	particular	card	to	connect	a	network,	it	is
identified	as	a	particular	participant	instance	in	the	network.

1.	 Let's	create	a	new	participant!	On	the	Test	tab,	select	Customer	participants:

2.	 You'll	see	the	participant	information	for	Alice	and	Bob.	Click	on	Create
New	Participant:

This	page	will	allow	you	to	issue	the	API	to	create	a	new	participant.
We've	entered	the	following	details	for	a	new	participant,	called	Anthony,
who	works	for	BlockIT:

{

			"$class":	"org.example.loc.Customer",

			"companyName":	"BlockIT",

			"personId":	"Customer003",

			"name":	"Anthony",

			"bank":	"resource:org.example.loc.Bank#BOD"

}

Note	his	identifier,	and	a	reference	to	Bank	of	Dinero.	Click	Create	New	and
notice	how	the	participant	registry	has	been	updated:

We've	created	a	new	participant	in	the	network.	(Feel	free	to	use	your	own
details,	just	ensure	that	your	participant	has	valid	data,	specifically	references	to
existing	banks.)

Click	on	the	ID	registry	under	admin.	You'll	now	be	presented	with	a	list	of
identities	associated	with	the	Playground.

Whereas	Alice's	and	Bob's	digital	certificates	are	private	to	their	application,
here	we	can	see	the	identities	associated	with	the	current	playground	user–the
administrator	of	the	business	network:

Click	Issue	New	ID:

Enter	ID003	for	the	ID	Name	and	associate	it	with	the	new	participant	we
created,	org.example.loc.Customer#Customer003,	and	click	Create	New:

Give	the	business	network	card	a	name,	and	click	Add	to	wallet.
You'll	see	that	the	list	of	IDs	has	been	updated	with	ID003,	associated	with
Customer003:

Click	on	the	My	Business	Networks	user	in	the	admin	tab	to	return	to	the
Composer	Playground	initial	page:

We	can	see	that	the	Playground	wallet	now	contains	a	new	business	network
card	that	allows	you	to	connect	to	our	network.	Click	on	Connect	now	for
Cusotmer003Card.	You're	now	connected	to	the	network	as	Customer003,	rather	than	the
Admin.

Access-control	lists
All	applications,	including	the	Composer	Playground,	use	a	business	network
card	from	their	wallet	(a	file	on	the	local	file	system)	to	connect	to	the	network.
The	card	contains	the	IP	address	of	the	network,	the	participant's	name,	and	their
X.509	public	key.	This	information	is	used	by	the	network	to	ensure	that	they
can	only	have	rights	to	perform	certain	operations	against	resources	in	the
network.	For	example,	only	particular	bank	employees	should	be	able	to
authorize	a	letter	of	credit.

You	can	see	how	these	rights	are	defined	for	a	business	network	by	examining
the	Access	Control	List	(ACL)	for	the	network.	Select	AccessControl	on	the
Define	tab:

Scroll	through	the	list	to	see	what	rights	different	users	have	over	the	different
resources	in	the	network.	These	rules	can	relate	to	types	or	instances,	though	the
former	is	more	common.	Spend	a	little	time	investigating	the	ACL	rules	in	this
file.

Summary
You've	learned	how	to	make	a	real	business	network,	using	Hyperledger
technology.	You	know	how	to	interact	with	the	business	network	as	a	user,	as	a
designer,	and	as	an	application	developer.	You	know	how	to	define	the
participants,	assets,	transactions,	and	events,	and	how	to	implement	their
creation	in	the	code.	You	know	how	to	expose	these	as	APIs	so	that	external
applications	can	consume	them!	You	can	learn	a	lot	more	about	Hyperledger
Composer	and	Hyperledger	Fabric,	consult	the	product	documentation	to	do	that.
Armed	with	that	information,	and	the	knowledge	in	this	chapter,	you're	in	a	great
place	to	start	building	your	own	business	network!

Let's	now	turn	our	attention	to	how	we	manage	the	development	lifecycle	in	a
blockchain	network	-	how	we	achieve	agility	in	a	blockchain	network.	We'll	look
at	the	process	and	tools	that	help	us	set	up	and	manage	the	day-to-day	operations
of	getting	blockchain	software	developed.

Agility	in	a	Blockchain	Network
At	this	point,	if	all	went	well,	you	should	have	a	fully	functional	decentralized
application,	with	the	associated	smart	contracts	running	on	Hyperledger	Fabric.
With	this	knowledge	in	hand,	life	is	going	to	be	good,	right?	Well,	like	anything,
solutions	evolve	over	time.	It	could	be	a	change	in	regulation,	the	introduction	of
a	new	member	in	the	consortium,	or	a	simple	bug	in	your	smart	contract—
whatever	the	cause,	the	solution	will	grow,	and	without	solid	development	and
operational	practices,	changes	will	be	slow	and	your	life	will	be	painful.

Considering	that	maintaining	agility	in	the	development	processes	of	an	IT
organization	is	already	very	challenging,	how	can	it	be	done	in	a	consortium?
How	can	companies	of	various	cultures	with	different	velocities	come	together
to	deliver	and	maintain	the	solution	in	a	time	frame	that	allows	them	to	maintain
the	competitive	edge	that	the	network	provides?

While	a	lot	has	already	been	written	on	the	topic	of	IT	agility	and	DevOps,	this
chapter	will	focus	on	applying	some	of	these	concepts	to	a	blockchain	network.
We	say	some	because	our	attention	will	be	on	those	concepts	that	are
specific/different	to	blockchains.	Through	automation	and	the	deployment	of	a
continuous	integration	and	delivery	(CI	and	CD)	pipeline,	we	will	discuss	the
impact	that	a	blockchain	network	has	on	the	people,	the	process,	and	the
technology.

In	this	chapter,	we	will	cover	the	following	topics:

Defining	the	promotion	process
Configuring	the	continuous	integration	pipeline
Protecting	the	source	control
Updating	the	network
Implication	of	the	consortium	on	team	structures

Defining	the	promotion	process
As	you	may	already	be	aware,	the	promotion	process	defines	the	key	set	of
activities	and	gates	that	any	system	modification	will	need	to	go	through.	It
typically	encompasses	the	development,	packaging,	testing	(for	example,	unit-
testing,	functional	verification,	and	integration	testing),	versioning,	and
deployment.	Usually,	an	organization	will	have	a	standardized	approach	that	will
be	documented	in	order	to	describe	what	is	expected	of	the	project	and	its
support	teams.	In	the	case	of	a	Hyperledger	Fabric	network,	there	will	be	at	least
two	different	promotion	processes	for	the	following:

Smart	contracts:	As	these	components	are	at	the	vital	to	business
interaction	between	the	participants	of	the	systems,	it	is	imperative	that
every	participant	agrees	to	the	content	of	the	contract
Integration	layer:	As	they	sit	on	the	boundary	of	the	network,	their
promotion	process	will	depend	on	who	owns	them	(a	consortium	versus	a
specific	organization)

Optionally,	there	might	also	be	a	process	to	control	changes	to	the	policies	of	the
network;	however,	it	will	be	closely	aligned	with	the	smart	contract	promotion
process.

However,	before	jumping	straight	into	the	configuration	of	the	pipeline,	let's
spend	a	bit	of	time	to	understand	the	considerations	of	these	two	promotion
processes.

Smart	contract	considerations
As	we	mentioned,	smart	contracts	are	vital	to	business	interaction	between	the
participants	of	any	blockchain	network.	As	they	essentially	contain	the	rules	and
conditions	under	which	a	transaction	is	deemed	valid,	we	need	to	ensure	that
every	participant	and	organization	agrees	to	its	validity—otherwise,	trust	will	be
compromised.

Conditions	for	promoting	a	smart	contract	would	include	the	following:

Traceability	to	an	issue:	Is	this	a	bug-fix	or	a	new	feature?	Along	with	this
element,	there	might	be	a	need	for	organizations	to	approve	the	issue	before
it	moves	to	implementation.
Successful	execution	of	all	tests:	This	may	be	self-evident	for	some,	but
most	tests	should	be	automated	and	the	results	captured.

Code	review	from	key	parties:	Would	you	sign	a	contract	without
reviewing	its	terms	and	condition?	Well,	the	code	review	serves	a	similar
purpose.
Impact	assessment:	Is	the	new	version	of	the	smart	contract	backwards-
compatible?	Changes	that	are	not	backwards-compatible	will	require
additional	planning.
Sign-off	from	key	parties:	Preceding	all	the	other	points,	do	you	have	the
blessing	of	all	relevant	parties?	Where	will	you	record	this?

The	definition	of	key	parties	will	be	something	that	will	be	left	for	the
consortium	to	define.	Key	parties	could	be	all	organizations	that	currently	use
that	smart	contract,	or	perhaps	the	term	could	refer	to	a	subset	of	technical	leads
or	members	of	the	founder	organization.

Preceding	the	conditions	for	promoting	a	smart	contract,	promotion	frequency
could	also	be	contentious.	Some	organizations	are	used	to	quarterly	cycles	while
others	are	used	to	a	weekly	deployment.	Friction	is	bound	to	occur	if	such	a
factor	is	not	discussed	upfront	as	this	will	have	a	direct	impact	on	the	operational
expense	an	organization	may	need	to	account	for	to	maintain	their	participation
to	the	expected	level	of	the	consortium.	It	is	also	to	be	noted	that	smart	contracts

may	be	scoped	to	the	entire	network	or	the	pair	or	set	of	participants.	The
scoping		of	these	smart	contracts	and	various	permutation	and	combinations
represents	interesting	system	modifications	needed	for	promotion.	

The	point	is	that	the	conditions	and	process	of	modifying	a	smart	contract	should
be	defined	upfront	by	the	consortium	to	avoid	any	misunderstanding	and
frustration.	In	a	sense,	this	is	no	different	than	a	traditional	contract	being
modified;	the	terms	for	the	conditions	of	a	contract	modification	need	to	be
agreed	upfront	to	avoid	conflicts.

Integration	layer	considerations
As	we	have	seen	in	Chapter	5,	Exposing	the	Network	Assets	and	Transactions,
there	are	a	few	patterns	that	an	organization	and	a	consortium	can	use	to	invoke
transactions	on	the	network.	The	selected	pattern	will	help	drive	the	management
of	the	promotion	process.

If	the	service	layer	of	an	application	directly	invokes	the	fabric	SDK,	then	the
owner	of	the	application	will	have	to	manage	its	promotion	process.	If,	instead,
the	consortium	imposes	the	use	of	a	REST	gateway,	then	you	can	expect	that	its
deployment	will	follow	a	process	like	the	one	for	a	smart	contract.

No	matter	the	owner,	the	abstraction	provided	by	the	integration	layer	should
isolate	the	application	from	the	smart	contract	and	as	such,	it	would	be	expected
that	they	evolve	independently.	However,	this	does	not	remove	the	importance	of
the	impact	assessment.

Promotion	process	overview
With	these	concepts	defined,	let's	turn	our	attention	to	the	promotion	process	of
our	application.	As	we	are	using	Git	as	our	software	configuration	management
tool,	we	will	leverage	its	social	coding	features	to	support	our	promotion
process:

We	can	use	Git	issues	to	record	new	features	or	bug	fixes
We	can	use	Git	branches	to	isolate	proposed	modifications
Git	GPG	is	used	to	sign	every	commit	and	tag
Pull	requests	are	used	to	enforce	governance

The	following	diagram	summarizes	the	process	we	will	use	to	configure	our
application:

Wondering	what	a	pull	request	is?
This	chapter	assumes	that	the	reader	is	already	familiar	with	many	of	the	Git	concepts.	If	this
is	not	the	case,	it	might	be	a	good	idea	to	pause	and	explore	what	Git	has	to	offer.

As	a	quick	summary,	a	pull	request	is	the	process	by	which	people	can	submit	code	changes
between	forks	(that	is,	different	repositories)	or	branches	(within	a	repository).	It	provides	a
controlled	way	to	review,	comment	on,	and	ultimately	approve	all	code	changes.

We	will	now	go	through	the	process	in	detail	and	focus	on	the	issue	of	trust	and
the	provenance	of	the	code.	As	we've	been	discussing,	since	smart	contracts	are
at	the	heart	of	blockchain	networks,	we	need	to	ensure	that	we	closely	track	their
evolution	to	avoid	unfortunate	events.	From	that	perspective,	we	will	want	to
have	traceability	from	the	requirements	(Git	issues)	all	the	way	to	the
deployment.

As	such,	every	code	modification	should	start	with	the	creation	of	a	Git	issue.	It
should	properly	identify	what	its	scope	is—feature	request	or	bug	fix—and	then
describe	precisely	what	work	is	expected.

We	will	cover	the	governance	aspect	in	a	few	chapters,	but	for	now	we	can
assume	that	the	issue	will	have	been	prioritized	and	work	will	be	assigned
according	to	the	consortium's	priority.

Once	the	developer	is	assigned	to	work	on	the	issue,	his	first	step	will	be	to
create	a	temporary	Git	branch	to	track	all	code	changes	related	to	this	Git	issue.
Code	modification	should	never	be	done	on	the	master	branch	as	it	represents
the	stable	version	of	the	code,	and	new	features	and	bug	fixes	should	be
reviewed	before	their	integration	into	the	stable	stream.

It	is	expected	that	developers	will	run	all	the	appropriate	tests	within	their	own
local	environments	and	only	commit	back	to	the	branch	when	code	is	ready	and
all	unit	tests	complete	successfully.

When	the	time	comes	to	commit	the	changes,	Git	provides	a	feature	that	allows
you	to	sign	all	your	work	using	GPG.	What	is	GPG,	you	ask?	It	stands	for	GNU
Privacy	Guard,	and	it	is	an	open	implementation	of	the	openpgp	standard.	It
basically	provides	a	tool	that	helps	you	sign	and	encrypt	data	using	your	own
private	key.	Git	has	implemented	GPG	to	allow	developers	to	sign	their	work.
Each	commit	or	tag	can	be	signed	using	the	GPG	key	of	the	author,	thereby
providing	nonrepudiation	of	commits.

Why	sign	code	modification	using	GPG?	Some	may	say	this	is	an	overhead,	but

consider	that	the	code	being	modified	represents	a	legal	contract	and	is	at	the
root	of	the	trust	of	the	network.	From	this	point	of	view,	it	might	be	desirable	to
ensure	that	the	identity	of	authors	is	proven	beyond	a	doubt.

Using	single-factor	authentication	for	normal	commits	may	not	be	sufficient	to
prove	their	authorship;	consider	all	the	reports	on	the	internet	of	people	spoofing
the	identities	of	others.

Without	signed	commits,	we	can	imagine	a	situation	where	a	rogue	developer
modifies	a	smart	contract	for	their	own	benefit	and	gets	away	by	claiming	they
were	not	the	real	author	of	the	code	change.	Such	an	event	would	jeopardize	the
viability	of	the	network	and	far	outweigh	the	inconvenience	of	signing	commits.

Now	that	the	developer	has	signed	the	commits,	they	are	ready	to	submit	a	pull
request.	The	pull	request	has	been	configured	to	check	the	following	criteria:

The	temporary	branch	is	up	to	date	with	the	content	from	the	master
Every	commit	is	signed
The	code	owners	have	reviewed	and	accepted	the	code	changes
The	continuous	integration	pipeline	has	successfully	completed

The	pipeline	will	be	automatically	triggered	when	the	pull	request	is	created.
Once	all	the	conditions	are	met,	then	one	of	the	code	owners	may	merge	the
code	with	the	master	branch	and	commit	those	changes	(while	signing	the
commit,	of	course).

In	a	real-life	scenario,	the	consortium	would	have	additional	environments	(user
acceptance	environment,	staging	environment,	and	so	on)	where	the	complete
solution	stack	would	be	tested.

The	final	step	described	in	the	diagram	focuses	on	tagging	the	release.	The	idea
here	is	that	a	single	release	may	be	built	from	a	series	of	multiple	pull	requests.
When	the	consortium	is	ready	to	release	a	new	version,	it	should	tag	it	to
represent	the	official	version	being	deployed.

It	is	on	this	event	that	the	pipeline	will	be	triggered	again,	but	with	a	different
objective:	build,	test,	sign,	and	publish	the	smart	contract	to	an	artifact
repository.	This	artifact	repository	could	be	one	of	many	popular	solutions	out
there,	but	in	our	case,	for	simplicity's	sake,	we	will	attach	the	smart	contract	to	a

Git	release.

Some	of	you	may	wonder	why	we	are	not	deploying	directly	on	the	network.
Again,	the	intent	is	to	maintain	a	clear	delineation	between	the	centralized	build
process	and	the	decentralized	nature	of	the	network.	Each	organization	can	be
notified	of	the	new	smart	contract	to	deploy,	pull	the	archive,	validate	against	the
signature,	and	deploy	it.

In	summary,	here	are	a	few	points	on	the	promotion	process:

Every	code	change	is	tied	to	a	change	request
Developers	sign	their	modification	using	GPG
Master	branch	integrity	is	preserved	by	the	pull	request	process
The	pipeline	builds	and	tests	the	code	for	pull	requests
The	pipeline	publishes	the	smart	contract	to	the	artifact	repository	when
changes	are	tagged
Each	organization	receives	a	notification	when	a	new	version	is	available

In	the	next	section,	we	will	start	configuring	the	continuous	integration	pipeline
we	have	just	defined.

Configuring	a	continuous	integration
pipeline
Not	all	languages	are	created	equal,	and	while	we	could	debate	the	benefits	of
strongly	typed	languages	such	as	Java	and	Go	versus	untyped	ones	such	as
JavaScript,	the	fact	is	that	we	need	to	rely	on	unit	tests	to	ensure	that	the	code	is
working	as	intended.	This	is	not	a	bad	thing	in	itself—every	code	artifact	should
be	supported	by	a	set	of	tests	with	adequate	coverage.

What	does	that	have	to	do	with	a	continuous	delivery	pipeline,	you	may	be
wondering?	Well,	it's	all	about	the	tests	and,	in	the	case	of	JavaScript	code,	this
is	very	important.	While	pipeline	will	need	to	ensure	the	following:

The	code	is	meeting	all	quality	rules
All	unit	tests	are	successful
All	integration	tests	are	successful

Once	these	steps	are	successful,	then	the	process	will	be	able	to	package	and
publish	the	result.

So,	in	the	next	sections,	we	will	experiment	with	the	deployment	and
configuration	of	our	pipeline	using	one	of	the	popular	cloud-based	continuous
integration	services:	Travis	CI.	We	will	cover	the	following	elements:

Customizing	the	pipeline	process
Publishing	our	smart	contract	against	a	repository

Once	this	is	all	done,	we	will	move	on	to	configure	our	Git	repository	to	control
how	changes	are	validated	and	integrated.	So	without	further	ado,	let's	get
started.

Customizing	the	pipeline	process
You	may	recall	that	in	our	promotion	process,	we	identified	two	events	within
the	life	cycle	that	were	meant	to	trigger	the	pipeline:

Pull	requests
Tag	release

Some	may	wonder	why	only	these	events	were	specifically	chosen.	If	you	recall
the	process,	the	developers	are	expected	to	manually	run	tests	on	their	local
environment,	so	there	is	not	an	absolute	need	to	trigger	the	pipeline	every	time
someone	delivers	code	to	their	own	branch.	However,	when	initiating	the
process	of	delivering	the	code	to	the	master	branch,	it	is	important	to	validate
that	the	code	can	be	built,	deployed,	and	tested	before	accepting	changes	to	the
master	branch.	The	same	goes	with	tagging	a	release—this	is	an	indication	that	a
new	version	has	been	cut,	and	so	it	makes	sense	to	rerun	the	pipeline	one	last
time	to	publish	the	deployment	unit	(the	smart	contract	package,	in	our	case).

In	any	case,	this	is	the	guideline	we	have	set	for	our	pipeline,	but	other	teams
may	choose	different	approaches.	The	reader	should	consider	this	a	guideline
and	not	a	definitive	approach	to	continuous	delivery.

Local	build
Before	we	dive	into	the	configuration	of	the	pipeline,	let	us	quickly	look	at	how
the	build	process	is	organized.		First	thing	to	note	is	that	our	solution	is	now
technology	rich:		Fabric,	Composer,	go,	node.js.	These	technologies	have	quite	a
few	dependencies	that	needs	to	be	in	place	for	the	build	to	work;	Think	about	the
pre-requisites	for	Fabric	and	Composer,	go	and	its	libraries,	NVM,	NPM,	Node	and	all
the	packages	deployed.

To	get	a	consistent	build	output	between	the	local	and	remote	environment	we
need	to	have	a	way	to	reduce	and	contain	the	dependencies.

This	is	where	the	approach	of	using	Docker	and	make	comes	in:

Docker	provides	us	an	environment	that	help	contains	the	dependencies	and
make	the	execution	consistent	between	environments.
make	helps	us	manage	the	dependencies	and	because	it	is	built-in	to	most	OS
(except	Windows	unfortunately)	it	reduces	the	needs	for	extra	tool
deployment	and	configuration.

This	combo	allows	developer	to	run	the	build	on	their	system	with	minimum
effort.	No	need	to	deploy	additional	packages,	if	the	system	has	Docker	and	make
then	it	is	good	to	go.

Windows	users:	While	Windows	does	come	with	make,	we	would	recommend	that	you	look	at
GNU	Make.
You	can	follow	the	installation	instructions	from	this	site:	http://gnuwin32.sourceforge.net/packages/make
.htm

As	we	mentioned,	Docker	provides	a	pre-built	environment	which	exists	within
the	container,	thus	avoiding	the	need	to	deploy	the	plethora	of	tools	on	the	local
workstation.		Here	is	the	composer	task:

.PHONY:	composer

composer:

		echo	">>	Building	composer	package	within	Docker	container"

		docker	run	--rm	-v	$(COMPOSER_PATH):/src	-v	$(DIST_DIR):/dist	-w	/src	node:8.11	sh	-c	

"$(COMPOSER_BUILD_CMD)"

Breaking	the	docker	run	command:

http://gnuwin32.sourceforge.net/packages/make.htm

	--rm:	Remove	the	container	at	the	end	of	the	build
	-v:	Mount	the	src	and	dist	directory	from	the	git	clone	folders
	-w:	Make	the	container	/src	directory	the	working	directory
	node:8:11:	Container	image	with	node	8.11	deployed	and	configured
	sh	-c	"$(COMPOSER_BUILD_CMD)":	The	build	command	to	run

As	you	can	see,	with	minimal	configuration	the	build	is	now	taking	place	within
the	container	but	using	the	local	git	clone	files	and	folders.		The	nice	thing	about
it	is	that	the	container	will	behave	the	same	whether	running	locally	or	in	our
build	pipeline.

Why	the	.PHONY	you	ask?		Makefile	is	a	great	but	ancient	tool.		As	such,	it	originally	primarily
focused	on	file	dependencies.	

If	someone	ever	defined	a	file	called	build	or	test,	make	would	consider	that	the	task	was	up-to-
date	and	do	nothing.

.PHONY	tells	make	to	not	consider	those	tags	as	file.

Feel	free	to	explore	the	remainder	of	the	tasks	of	the	Makefile.	Chaincode	will	be
built	using	a	different	image	(golang:1.9.6)	but	leverages	the	same	approach.

From	a	Makefile	tasks	perspective	the	following	dependencies	are	defined:

In	the	next	section,	we	will	make	use	of	the	make	build	and	make	test	command	to
execute	our	pipeline.

Configuring	Travis	CI
Getting	started	with	Travis	CI	is	pretty	straightforward.	You	basically	need	to
point	your	browser	to	the	www.travis-CI.org	website,	authenticate	using	your
GitHub	identity,	and	authorize	Travis	to	access	your	GitHub	account,	and	Travis
CI	will	create	a	profile	for	you	and	sync	it	with	your	Git	account.	Once	this	is
done,	you	will	be	presented	with	a	list	of	Git	projects.	You	only	need	to	flick	the
switch	next	to	our	project	and	Travis	CI	will	start	tracking	the	events	in	your
GitHub	repository:

https://travis-ci.org/

Customizing	the	pipeline	using
.travis.yml
While	Travis	CI	is	now	tracking	our	Git	repository,	it	is	not	yet	smart	enough	to
know	what	to	do	with	it	when	an	event	occurs.	To	tell	Travis	CI	what	to	do,	we
need	to	create	a	special	file	within	the	root	of	the	repository.	Whenever	a	Git
event	happens	(for	example,	a	Git	pull	request),	the	.travis.yml	file	will	be
processed	and	used	to	orchestrate	the	pipeline	execution.

In	the	case	of	our	smart	contract,	we	have	the	following	.travis.yml	in	the	root	of
our	Git	repository:

sudo:	required

services:

-	docker

dist:	trusty

cache:	

		directories:

		-	node_modules

script:

-	make	build

-	make	test

Since	our	Makefile	is	making	use	of	Docker	container	to	make	the	build
independent	of	the	environment	in	which	it	is	run,	we	need	to	let	Travis	know
about	this.		Hence,	the	first	three	lines	of	the	file	provide	an	indication	that	the
build	process	will	make	use	of	Docker.		The	dist:	trusty	is	fixing	the	Linux
distribution	to	ensure	consistency	of	the	system	behaviour.

The	important	lines	represent	the	two	major	steps	of	the	process:

Cache:	This	is	an	optimization	of	of	the	build	and	ensures	that	the
node_modules	is	not	always	re-loaded	every	time	the	build	runs.
Script:	This	is	where	the	build	commands	are	provided.	In	this	case,	the
step	includes	the	following:

make	build:	Builds	the	chaincode	and	the	composer	BNA
make	test:	Unit	test	execution

The	details	of	the	tasks	for	chaincode	was	covered	in	a	previous	chapter	so	we

won't	cover	those	details	again.		However	we	will	focus	on	the	Composer	build
and	explore	the	stanza	of	the	package.json	file:

[...]

"scripts":	{

		"prepare":	"mkdirp	../dist	&&	composer	archive	create	--sourceType	dir	--sourceName	.	

-a	../dist/trade-finance-logistics.bna",

		"pretest":	"npm	run	lint",

		"lint":	"eslint	.",

		"test":	"nyc	mocha	-t	0	test/*.js	&&	cucumber-js",

		"coverage":	"nyc	check-coverage",

		"posttest":	"npm	run	coverage"

},		

[...]		

You	will	find	the	package.json	under	the	trade-finance-logistics	repository	in	the	composer
folder.

Lets	quickly	review	each	of	the	default	commands	generated	when	the	composer
project	was	generated:

prepare:	This	command	will	package	our	project	into	a	BNA	file.	This	script
runs	before	the	install	and	will	use	the	Hyperledger	composer	command-
line	interface	to	create	the	archive.		The	only	modification	we	have	done	to
this	task	was	to	add	the	sub-directory		..	to	the	creation	of	the	dist
directoring	and	output	of	the	BNA	file.
lint:	Runs	the	eslint	tool,	which	is	a	tool	we	use	to	analyse	the	code	while
searching	patterns.	The	rules	applied	by	this	tool	can	be	adjusted	through
the	.eslintrc.yml	file.
test:	The	mocha	unit	test	framework	will	run	the	tests	that	are	located	in	the
project	test	directory	and	will	be	invoked	by	the	nyc	tool.	The	nyc	tool	is	used
to	measure	the	coverage	of	the	mocha	tests.

You	will	then	need	to	add	these	two	tasks	to	the	package.json:

posttest:	This	task	is	a	trigger	that	gets	activated	once	the	test	have	run.		In
this	case	it	will	call	the	coverage	task.
coverage:	Runs	the	nyc	tool	in	reporting	mode.	This	task	will	assess	whether
there	are	sufficient	unit	tests	to	cover	the	code.	This	task	fails	the	build	if
the	minimums	defined	in	the	nyc	stanza	of	the	package.json	are	not	met.	The
following	is	a	sample	of	this	config:

								"nyc":	{

										"lines":	99,

										"statements":	99,

										"functions":	99,

										"branches":	99

								},

By	modifying	the	package.json	we	now	have	"gates"	that	run	the	verification	of	the
test	coverage	and	the	code	quality	and	fails	if	the	minimum	is	not	met.

Publishing	our	smart	contract
package
At	this	point,	in	traditional	deployments,	we	could	consider	automating	the
deployment	of	our	application	to	push	it	to	production	automatically.	However,
in	the	case	of	a	blockchain	network,	allowing	a	single	process	to	push	production
code	to	multiple	organizations	and	locations	could	be	the	Achilles	heel	of	the
network.

Instead	of	trying	to	push	production	code	to	multiple	organizations,	we	will
publish	the	BNA	file	to	a	trusted	store	(in	this	case,	the	GitHub	release)	and	let
every	organization	pull	the	archive.

Fortunately	for	us,	Travis	CI	has	a	function	used	within	the	deploy	step	that
allows	us	to	automatically	attach	the	smart	contract	package	to	a	tagged	release.
The	function	requires	an	OAUTH_TOKEN	to	be	configured	on	our	GitHub	account,	and
it	needs	to	be	added	to	the	Travis	configuration	to	allow	Travis	to	attach	the
smart	contract	to	the	release.

While	that	configuration	could	be	done	manually,	there	is	a	simple	command-
line	interface	for	Travis	that	will	automatically	push	the	token	to	Git	Hub	and
add	the	deploy	section	to	the	.travis.yml.

We	can	install	travis	CLI	using	the	following	command:

gem	install	travis

Once	the	CLI	is	installed,	we	run	the	following	command:

$	travis	setup	releases

Username:	ldesrosi

Password	for	ldesrosi:	********

File	to	Upload:	./dist/network.bna

Deploy	only	from	HyperledgerHandsOn/trade-finance-logistics?	|yes|	

Encrypt	API	key?	|yes|	no

The	tool	will	ask	for	a	few	pieces	of	information:	our	GitHub	user	ID,	password,
location	of	the	file	we	want	to	upload	(our	BNA),	whether	we	want	to	only	deploy

from	our	repository,	and	if	we	want	to	encrypt	our	API	key.	On	this	last	question,
it	is	important	to	say	no.	We	will	soon	explain	why.

The	tool	will	add	a	section	like	the	following	at	the	end	of	the	.travis.yml	file:

deploy:

		provider:	releases

		api_key:	3ce1ab5452e39af3ebb74582e9c57f101df46d60

		file_glob:	true

		file:	./dist/*

		on:

				repo:	HyperledgerHandsOn/trade-finance-logistics

The	first	thing	we	will	do	is	copy	the	API	key	to	our	workstation	clipboard	and
go	back	to	the	Travis	CI	site.	On	the	main	dashboard,	you	should	see	your
repository,	and	on	the	right-hand	side,	you	will	see	a	button	called	More
Options.	By	clicking	it	and	selecting	Settings,	you	will	be	presented	with	a
panel,	split	into	a	few	sections.

Scroll	down	a	bit	and	you	will	find	the	Environment	Variables	section.	Go
through	the	following	steps:

1.	 In	the	name	field,	type	OAUTH_TOKEN
2.	 In	the	value	field,	paste	the	API	key	you	copied	in	the	.travis.yml	file
3.	 Click	Save

The	results	should	be	as	follows:

You	see,	while	we	could	have	kept	the	OAUTH_TOKEN	encrypted	in	our
.travis.yml	file,	it	would	have	been	stored	in	our	GitHub	repository	to	be	viewed
by	everyone.	By	moving	the	key	to	the	environment,	we	avoid	this.

We	can	now	modify	the	configuration	file	to	refer	to	the	environment	variable
we	just	defined:

deploy:

	provider:	releases

	api_key:	${OAUTH_TOKEN}

	file_glob:	true

	file:	./dist/*

	on:

	repo:	HyperledgerHandsOn/trade-finance-logistics

	tags:	true

The	on:	section	provides	the	ability	to	restrict	the	publication	process	to	the
tag	event	on	your	repository.

With	the	package.json	and	the	.travis.yml	modified,	we	just	need	to	update	our
repository	by	committing	and	pushing	our	changes	to	the	master	branch.	Our
pipeline	is	now	fully	configured!	In	a	few	sections,	we	will	see	how	network
participants	can	be	notified	of	the	new	release	and	retrieve	the	archive,	but	for
now,	let's	look	at	what	we	need	to	configure	in	Git.

Configuring	your	Git	repository
In	this	section,	we	will	see	how	to	properly	protect	our	Git	repository	by	doing
the	following:

Setting	the	code	owners	of	our	smart	contract
Protecting	the	master	branch

Configuring	Git	for	commit	signing	and	validation
Testing	the	process	by	submitting	a	pull	request

Setting	the	code	owners	of	our	smart
contract
We	will	start	by	defining	the	code	owners	for	our	smart	contract.

Ideally,	in	a	large	consortium,	the	code	owners	should	not	be	the	same	group	as
the	one	that	modifies	the	code.	Remember,	these	steps	are	meant	to	reinforce	the
trust	in	the	network.

Code	owners	are	defined	in	a	file	called	CODEOWNERS,	which	can	reside	either	in	the
root	directory	or	the	.Github	directory.	GitHub	allows	us	to	define	different	code
owners	depending	on	file	patterns,	so	while	we	could	get	very	creative,	we	will
focus	on	a	few	artifacts	from	our	Hyperledger	composer	project:

package.json:	As	it	controls	the	build	and	packaging	process,	this	represents	a
key	file	to	control.
header.txt:	This	contains	the	license.	As	such,	you	may	want	a	specific	set	of
people	who	have	oversight	on	this	one	(think	lawyers).
JavaScript	files:	This	contains	the	core	logic	of	the	smart	contracts.
Depending	on	the	complexity,	this	could	be	further	broken	down	depending
on	the	files,	but	we	will	keep	it	at	a	high	level.
*.cto	files:	This	should	be	aligned	to	the	owners	of	the	JavaScript.
*.acl	files:	This	should	be	aligned	to	the	owners	of	the	JavaScript.
*.qry	files:	This	should	be	aligned	to	the	owners	of	the	JavaScript.
*.md	files:	This	represents	the	documentation	of	your	smart	contract.
Depending	on	the	scope,	this	could	be	aligned	to	the	same	owners	as	the
JavaScript	or	a	different	set	of	people.

Sample	content	of	the
CODEOWNERS
The	following	represents	a	basic	set	of	rules	concerning	the	CODEOWNERS	based	on
the	authors	of	this	book.	Feel	free	to	adjust	it	to	your	own	team.	The	important
point	to	note	here	is	that	the	last	pattern	to	match	will	be	the	one	used	to	identify
the	owners	who	need	to	perform	the	review.	As	such,	we	must	be	careful	as	to
the	order	of	the	rules:

#	In	this	example,	documentation	and	Header.txt	are	part	#	of	the	default	match.	

Default	owners	if	nothing	else	

#	matches.

*							@ldesrosi

#	Code	related	should	be	validated	by	Rama.		

#	JavaScripts	files	could	have	been	separated	

#	into	tests	versus	logic	by	using	folder's	structure

*.qry			@rama

*.acl			@rama

*.cto			@rama

*.js				@rama

#	Package.json	should	be	reviewed	by	everyone

package.json				@ldesrosi	@rama	@ODOWDAIBM

Instead	of	listing	each	individual	member	of	the	team	in	the	rules,	we	could	have	used	the
concept	of	GitHub	teams	to	assign	the	code	ownership.

With	the	CODEOWNERS	defined,	we	can	now	focus	on	submitting	it	to	the	master
branch.	Using	a	command-line	prompt,	go	through	the	following	steps:

1.	 Navigate	to	the	location	of	the	clone	of	your	repository
2.	 Create	a	new	directory	called	.Github
3.	 Change	directory	to	the	newly	created	directory
4.	 Create	the	CODEOWNERS	file	according	to	the	content	defined	in	the	previous

section
5.	 Commit	the	new	file	and	directory:

								Git	add	-A

								Git	commit	-m	"Setting	initial	code	ownership."

6.	 Push	the	commits	to	the	master	branch:

								Git	push

Protecting	the	master	branch
As	we	previously	discussed,	since	the	master	branch	represents	the	stable
version	of	our	smart	contract,	we	need	to	properly	control	how	code	changes	are
introduced.

We	will	now	configure	our	repository	to	ensure	that	only	pull	requests	can	alter
the	content	of	the	master	branch.	To	achieve	this,	the	first	step	is	to	open	a
browser	and	point	it	to	your	Git	repository.

Once	the	web	page	has	loaded,	go	through	the	following	steps:

1.	 Looking	at	the	top	tabs	of	the	Git	pages,	you	should	be	able	to	locate	the
Setting	tab

2.	 Once	you	click	on	it,	a	side	menu	should	appear	on	the	left-hand	side	of	the
page

3.	 Select	the	Branches	menu	item	and	you	should	be	able	to	see	the	Protected
branches	section

4.	 Select	the	master	branch	from	the	dropdown

This	will	open	the	page	that	contains	all	the	options	we	need	to	set	to	properly
protect	the	master	branch.

The	content	should	be	set	to	the	following:

This	first	set	of	options,	circled	in	red,	ensures	that	every	change	to	the	master
branch	is	done	through	pull	requests	and	that	the	approval	process	can	only	be
done	on	up-to-date	code,	and	by	the	code	owners	only.

We	have	highlighted	this	section	in	red	because,	while	these	are	very	important
when	working	in	teams,	it	should	be	disabled	for	our	exercise.	Essentially,
GitHub	will	not	let	you	review	your	own	pull	requests	and	will	prevent	you	from
completing	the	steps	later	on.

The	second	set	of	options	provides	the	ability	to	define	checks	to	be	performed
before	allowing	the	code	to	be	merged.	We	will	shortly	be	adding	one	of	these
checks	in	the	next	section.

The	final	option	also	ensures	that	even	administrators	of	the	repository	need	to
follow	the	process	of	pull	requests	when	modifying	the	code.

Configuring	Git	for	commit	signing
and	validation
At	this	point,	we	have	a	protected	our	Git	branch	and	identified	who	should	be
reviewing	code	changes.	We	also	know	that	signing	commits	is	a	good	way	for	a
developer	to	prove	that	they	were	the	author	of	a	code	change.	However,	unless
everyone	signs	their	commits,	how	can	you	be	certain	that	unsigned	commits	are
valid?

Fortunately,	there	are	some	GitHub	applications	that	are	emerging	to	solve	that
problem.	We	will	use	one	such	application	called	probot-gpg,	available	at	https://pr
obot.Github.io/apps/gpg/.

By	navigating	to	this	page	using	your	browser,	you	will	be	able	to	click	the
Install	button.	You	will	be	brought	to	a	page	that	will	allow	you	to	select	which
repository	you	want	to	allow	the	application	to	select.	In	our	case,	we	will	select
the	yourID/trading-smart-contract/	repository.	Click	Install	and	the	application	will
be	granted	access	to	your	repository.

https://probot.github.io/apps/gpg/

Configuring	GPG	on	your	local
workstation
To	make	sure	everything	is	working	nicely,	we	will	now	set	up	GPG	on	our	local
workstation	and	test	our	repository	by	submitting	a	pull	request.	In	this	section,
we	will	do	the	following:

Install	GPG	and	generate	our	set	of	gpg	public	and	private	keys
Import	our	gpg	public	key	in	our	GitHub	profile
Submit	a	pull	request	to	the	master	branch	with	a	signed	commit

The	client	application	for	gpg	can	be	found	on	the	www.gnupg.org	website.	From	the
website,	you	may	download	either	the	source	code	or	the	precompiled	binaries.
Depending	on	your	operating	system	and	the	option	chosen	(Source	code	or
Binaries),	follow	the	instructions	provided	on	the	website	and	install	the	client.

In	order	to	configure	the	system	to	use		gpg	keys	to	sign	our	Git	commits,	we	will
need	to	do	the	following:

1.	 Generate	a	gpg	key
2.	 Export	the	public	key
3.	 Import	the	public	key	in	our	Git
4.	 Configure	our	Git	client	to	make	use	of	our	gpg	key

To	get	started,	open	a	terminal	and	type	the	following	command:

gpg	--full-generate-key

The	gpg	tool	will	now	ask	a	few	questions	on	the	characteristics	of	the	key:

Kind	of	key:	Select	the	default	(RSA	and	RSA)
Key	size:	Select	the	maximum	size	(4,096)
Key	validity	period:	Make	sure	that	the	key	does	not	expire

With	the	characteristics	of	the	key	provided,	the	gpg	tool	will	ask	about	the
identity	associated	with	the	key:

https://gnupg.org/

Real	name
Email
Comment:	You	may	want	to	use	the	comment	box	to	indicate	the	purpose
of	this	identity	(signing	GitHub	commits)

Make	sure	that	the	email	matches	the	entries	of	your	GitHub	profile,	or	else	the	system	will
not	be	able	to	reconcile	the	identity	to	the	commit.	Remember	that	case	matters	for	GitHub:
yourID@email.com	is	not	the	same	email	as	yourID@email.com.

Finally,	the	tool	will	ask	for	a	passphrase	to	protect	the	private	key	and	ask	you
to	generate	entropy	by	moving	the	mouse	around.	After	a	few	seconds,	you
should	see	an	output	such	as	the	following:

gpg:	key	3C27847E83EA997D	marked	as	ultimately	trusted

gpg:	directory	'/Users/yourID/.gnupg/openpgp-revocs.d'	created

gpg:	revocation	certificate	stored	as	'/Users/yourID/.gnupg/openpgp-

revocs.d/962F9129F27847E83EA997D.rev'

public	and	secret	key	created	and	signed.

pub			rsa4096	2018-02-03	[SC]

						962F9129FC0B77E83EA997D

uid				Your	Name	(GitHub	Signing	Identity)	<yourID@email.com>

sub			rsa4096	2018-02-03	[E]

With	the	gpg	created,	we	now	need	to	export	the	key	in	a	format	that	GitHub	will
be	able	to	understand.	To	achieve	this,	we	run	the	following	command:

gpg	--armor	--export	<<email-you-use-to-generate-the-key>>

The	tool	will	output	the	public	key	directly	in	the	console	and	should	look	as
follows:

-----BEGIN	PGP	PUBLIC	KEY	BLOCK-----

mQINBFp1oSYBEACtkVIlfGR5ifhVuYUCruZ03NglnCmrlVp9Nc417qUxgigYcwYZ

[…]

vPF4Gvj2O/l+95LfI3QAH6pYOtU8ghe9a4E=

-----END	PGP	PUBLIC	KEY	BLOCK-----

Copy	the	whole	key	to	the	clipboard,	including	the	header	and,	using	your
browser,	go	to	your	GitHub	profile	and	select	the	SSH	and	GPG	keys	tab	from
the	left-hand	side	menu.

You	should	see	two	sections—SSH	and	GPG.	Click	the	New	GPG	Key	button
and	paste	the	contents	of	your	clipboard	in	the	entry	field	that	shows	up.	Finally,
click	the	Add	GPG	Key	button,	and,	if	everything	goes	well,	GitHub	should
show	you	a	similar	entry:

Take	note	and	copy	the	Key	ID	to	your	clipboard.	We	will	reuse	that	key	to
configure	our	Git	client.

Back	in	the	console,	type	the	following	command:

git	config	--global	user.signingkey	3C27847E83EA997D

At	this	point,	you	should	have	a	fully	configured	pipeline	and	protected	Git
repository.	We're	now	ready	to	start	testing	our	configuration.

To	facilitate	the	testing	steps	in	the	next	section,	we	have	not	activated	the	gpg	signing
configuration	in	our	Git	client.	We	will	activate	it	in	the	next	section.

Testing	the	end-to-end	process
With	all	of	the	configuration	done,	we	will	run	through	a	simple	scenario	that
will	allow	us	to	test	our	configuration	and	ensure	that	everything	is	working
smoothly.

The	scenario	will	consist	of	addressing	the	need	to	add	a	new	transaction.	In
order	to	deliver	this	new	feature,	we	will	perform	the	following	steps/tests:

1.	 Create	a	new	transaction	for	our	business	network.	Once	we	are	done
coding,	we	will	then	try	to	do	the	following:
1.	 Push	a	commit	to	the	master	branch	directly
2.	 Submit	a	pull	request	with	an	unsigned	commit

2.	 Add	test	cases	to	cover	our	new	transaction:
1.	 Amend	our	commit	to	be	signed
2.	 Add	our	test	case	and	submit	an	additional	signed	commit

3.	 Release	the	new	version	of	the	business	network
1.	 Merge	the	pull	request	on	the	master	branch
2.	 Create	a	new	release	and	check	that	the	BNA	is	published

Creating	a	new	transaction
For	the	purpose	of	our	tests,	we	will	keep	the	new	transaction	relatively	simple:
our	transaction	will	merge	two	assets	into	one,	adding	their	value	in	the	process.

To	declare	the	new	transaction,	we	will	edit	the	model	file	and	add	this	new
declaration:

transaction	MergeAssets	{

-->	Asset	mergeFrom

-->	Asset	mergeTo

}

With	the	definition	created,	let's	add	the	logic	in	the	/lib/logic.js	file:

/**

		*	Sample	transaction

		*	@param	{org.example.biznet.MergeAssets}	tx

		*	@transaction

		*/

function	onMergeAssets(tx)	{

		var	assetRegistry;

		var	mergeFromAsset	=	tx.mergeFrom;

		var	mergeToAsset	=	tx.mergeTo;

		mergeToAsset.value	+=	tx.mergeFrom.value;

		return	getAssetRegistry('org.example.biznet.SampleAsset')

				.then(function(ar)	{

						assetRegistry	=	ar;

						return	assetRegistry.update(mergeToAsset);

				})

				.then(function()	{

						return	assetRegistry.remove(mergeFromAsset);

				});

}

That's	all	there	is	to	it!	Of	course,	some	may	remark	that	we	are	not	following	a
good	methodology—where	are	our	unit	tests	for	this	code?	Let's	proceed.	Don't
worry,	it's	all	part	of	the	plan!

Pushing	a	commit	to	the	master
branch	directly
With	the	code	modification	done,	lets	try	to	add	the	source	code	to	our	Git
repository.	To	do	so,	we	will	go	through	the	following	steps:

1.	 Navigate	to	the	location	of	the	clone	of	your	repository
2.	 Commit	the	new	file	and	directory:

git	add	-A	

git	commit	-m	"Testing	master	branch	protection."

3.	 Push	the	commits	to	the	master	branch:

git	push

The	push	command	should	fail	with	an	error	message,	such	as	the	following:

$	git	push

Counting	objects:	3,	done.

Delta	compression	using	up	to	8	threads.

Compressing	objects:	100%	(2/2),	done.

Writing	objects:	100%	(3/3),	367	bytes	|	367.00	KiB/s,	done.

Total	3	(delta	0),	reused	0	(delta	0)

remote:	error:	GH006:	Protected	branch	update	failed	for	refs/heads/master.

remote:	error:	Waiting	on	code	owner	review	from	ldesrosi.

To	https://github.com/HyperledgerHandsOn/trade-finance-logistics.git

	!	[remote	rejected]	master	->	master	(protected	branch	hook	declined)

error:	failed	to	push	some	refs	to	'https://Github.com/yourID/trading-smart-

contract.Git'

If	you	get	a	similar	message,	you	know	you're	on	the	right	path.	If	the	push
command	succeeds,	you	should	probably	go	back	to	the	Protecting	the	master
branch	section.

Submitting	a	pull	request	with	an
unsigned	commit
Continuing	from	our	previous	attempt,	we	know	that	we	need	a	separate	branch
to	store	our	work	before	we	can	submit	a	pull	request	to	the	master	branch.	Now
that	we've	committed	a	change,	we	need	to	be	careful	not	to	lose	our	work.	The
first	thing	we	will	do	will	be	to	undo	our	commit	by	running	the	following
command:

git	reset	HEAD^

To	save	our	work,	we	will	use	a	nice	function	from	Git	that
will	temporarily	store	our	work:

git	stash

With	our	modification	saved,	we	can	then	create	the	new	branch	locally	by
running	the	Git	checkout	command.	For	those	who	are	less	familiar	with	Git,	the	-b
option	specifies	the	name	of	the	new	branch	and	the	last	parameter	indicates	that
the	new	branch	is	based	on	the	master	branch:

git	checkout	-b	Feat-1	origin/master

With	the	new	branch	created	locally,	we	can	restore	our	modification	using	the
following:

git	stash	pop

Finally,	we	can	commit	our	code	and	push	it	to	the	Feat-1	branch:

git	add	-A

git	commit	-m	"Testing	commit	signing."

git	push

With	these	commands	executed,	our	Feat-1	branch	should	now	contain	the
additional	transaction	code.	Let's	switch	to	our	browser	and	create	the	pull
request	on	GitHub:

1.	 Select	the	Feat-1	branch	and	click	the	New	pull	request	button

2.	 Make	sure	the	branches	can	merge	and	click	the	Create	pull	request	button

The	result	on	the	next	screen	will	show	that	the	pull	request	is	failing	the	gpg
check	and	the	Travis	build.	The	details	for	the	build	should	show	that	the	test
coverage	is	not	sufficient	to	meet	the	threshold	we	established	previously:

If	you	get	the	same	results,	then	you	are	doing	well!	If	your	pull	request	has	no
such	check	failing,	make	sure	that	you	look	at	the	Configuring	Git	for	commit
signing	and	validation	section.

We'll	now	correct	our	build	and	add	the	necessary	tests!

Adding	test	cases
Before	adding	our	test	case,	we	will	first	enable	gpg	signing	and	amend	our
previous	commit	with	a	signature.	This	should	get	us	on	the	right	path	to	a
healthy	pull	request.

Submitting	a	pull	request	with	a
signed	commit
We	can	now	finalize	and	activate	our	gpg	signing.	In	the	console,	type	in	the
following	command:

git	config	--global	commit.gpgsign	true

Now,	instead	of	having	to	create	a	separate	branch	and	go	through	the	same	steps
all	over	again,	we	will	simply	amend	our	commit	and	add	our	signature	to	it:

git	commit	--amend	-S	-m	"Testing	commit	signing."

You	may	get	the	following	error	when	trying	to	amend	your	commit:
error:	gpg	failed	to	sign	the	data

fatal:	failed	to	write	commit	object

If	you	do,	you	may	need	to	set	the	following	environment	variable:
export	GPG_TTY=$(tty)

The	command	will	delegate	the	signing	to	GPG,	and	you	should	be	asked	for
your	gpg	passphrase.	Once	this	is	completed,	we	can	push	our	changes	to	our	test
branch	using	the	following	command:

git	push	origin	test	--force

We	need	to	--force	our	change	as	we	are	only	amending	our	commit.	

If	you	go	back	to	the	browser	and	look	at	the	pull	request,	you	should	now	have
something	like	the	following:

We	should	have	solved	one	problem—the	signing	of	commits.	If	you	have	the
same	results,	you	now	know	everything	is	configured	properly.	You	can	go
ahead	and	focus	on	correcting	the	test	coverage	by	adding	a	test	for	our	new
transaction.

Adding	the	mergeAssets	unit	test
Let's	add	the	content	of	this	additional	test	case	to	the	test/logic.js	file:

	describe('MergeAssets()',	()	=>	{

	it('should	change	the	value	to	'	+	assetType	+	'	to	200',	()	=>	{

	const	factory	=	businessNetworkConnection.getBusinessNetwork().getFactory();

	//	Create	the	asset	1

	const	asset1	=	factory.newResource(namespace,	assetType,	'ASSET_001');

	asset1.value	=	100;

	//	Create	the	asset	2

	const	asset2	=	factory.newResource(namespace,	assetType,	'ASSET_002');

	asset2.value	=	100;

	//	Create	a	transaction	to	change	the	asset's	value	property

	const	mergeAssetTx	=	factory.newTransaction(namespace,	'MergeAssets');

	mergeAssetTx.mergeFrom	=	factory.newRelationship(namespace,	assetType,	

asset1.$identifier);

	mergeAssetTx.mergeTo	=	factory.newRelationship(namespace,	assetType,	

asset2.$identifier);

	let	assetRegistry;

	return	businessNetworkConnection.getAssetRegistry(namespace	+	'.'	+	

assetType).then(registry	=>	{

			assetRegistry	=	registry;

			//	Add	the	asset	to	the	appropriate	asset	registry

			return	assetRegistry.add(asset1);

	}).then(()	=>	{

			return	assetRegistry.add(asset2);

	}).then(()	=>	{

			//	Submit	the	transaction

			return	businessNetworkConnection.submitTransaction(mergeAssetTx);

	}).then(()	=>	{

		//	Get	the	asset

		return	assetRegistry.get(asset2.$identifier);

	}).then(newAsset	=>	{

		//	Assert	that	the	asset	has	the	new	value	property

		newAsset.value.should.equal(200);

	});

});

});

We	won't	cover	the	details	of	this	test	case,	as	it	has	been	covered	in	previous
chapters.	However,	if	you	want	to	see	whether	the	test	has	completed
successfully,	run	the	following	command:

npm	test

Let's	commit	this	new	test	to	Git:

git	add	-A

git	commit	-S	-m	"Added	new	test	case"

git	push	origin	Feat-

This	should	automatically	trigger	our	build	pipeline,	which	should	complete
successfully	and	leave	our	pull	request	in	the	following	state:

This	should	allow	you	to	merge	the	pull	request.	Click	the	Merge	request	button,
confirm	the	merge,	and	get	ready	to	create	your	first	release!

If	your	pull	request	is	not	green	and	asks	for	a	code	review,	you	may	have	forgotten	to	uncheck
the	Require	pull	request	reviews	before	merging	option,	as	mentioned	in	the	Protecting	the
master	branch	section.

Releasing	the	new	version
We	are	now	ready	to	release	our	new	business	network	archive.	Go	to	your	web
browser	and	navigate	to	the	Code	tab	of	your	Git	repository.	You	should	see	an	x
releases	option	in	the	top	navigation	bar,	as	shown	in	the	following	screenshot:

Click	on	the	releases	and	then	click	on	the	Draft	a	new	release	button.	Fill	in	the
form	in	a	similar	way	to	the	following	example:

Click	on	the	Publish	release	button	at	the	bottom	of	the	form.	This	should	trigger
your	build	pipeline	one	final	time	and,	after	a	few	minutes,	you	should	have	the
BNA	file	attached	to	the	list	of	assets	associated	with	your	release:

Well	done!	We've	configured	a	complete	pipeline	using	Travis	CI	and	GitHub,
and	we've	explored	how	to	properly	sign	and	protect	our	smart	contracts.

Our	last	step	will	now	be	to	see	how	the	various	network	participants	can
automate	the	retrieval	of	the	business	network	archive	(BNA)	and	deploy	smart
contract	updates.

Updating	the	network
With	the	BNA	file	published	and	tagged	to	a	release,	we	will	now	look	at	the
process	to	install/update	the	business	network	in	our	consortium.	More
specifically,	we	will	look	at	the	following	steps:

Release	notification
Business	Network	update

Notifying	the	consortium
There	are	a	few	ways	and	techniques	that	can	be	applied	to	ensure	that	every
organization	is	notified	that	a	business	network	is	ready	to	be	updated.

The	one	thing	that	is	for	certain	is	that	manual	notification	is	not	an	option;	as
the	number	of	smart	contracts	and	participants	grows,	you	need	a	reliable
notification	process.

The	following	diagram	depicts	a	potential	process	for	deploying	a	business
network	following	the	delivery	of	a	new	release:

As	we've	previously	discussed,	we	do	not	distribute	the	BNA	as	this	would
create	the	opportunity	for	someone	to	tamper	with	the	archive.	Instead,	the
notification	only	informs	every	organization	of	the	existence	of	a	new	release
and	lets	the	consortium	retrieve	and	deploy	the	archive.

This	is	effectively	what	the	concept	of	the	release	listener	is	doing:	listening	for
notification	and	then	issuing	a	request	to	GitHub	to	retrieve	the	archive	of	the
new	release.

The	release	listener	is	a	concept	that	would	need	to	be	implemented	by	a	consortium	should
they	decide	to	adhere	to	this	approach.	
Do	not	look	for	the	source	code—it	does	not	exist	(yet).

The	release	listener	could	be	implemented	to	listen	for	events	coming	from	one
of	two	sources:

GitHub	webhooks:	By	providing	the	URL	of	the	release	listener,	GitHub
webhooks	can	be	configured	to	send	a	JSON	message	on	specific	events.	In
our	case,	it	would	be	the	Release	event.

Travis	CI	notification:	There	is	also	a	concept	similar	to	the	webhook	in
Travis	CI.	There	are	also	other	mechanism,	such	as	Atom	feed	and	Slack
integration,	that	may	be	more	suitable	to	your	team.

The	choice	of	the	mechanism	really	depends	on	your	business	requirements	but,
generally,	the	use	of	GitHub	webhooks	would	be	preferable	as	they	are	triggered
by	the	actual	event	we	are	interested	in:	the	release	of	a	new	version	of	the	smart
contract.

Even	if	someone	was	to	send	a	false	notification	to	the	release	listener,	because	it	only
retrieves	released	binaries	from	GitHub,	it	would	not	be	possible	for	a	third	party	to	inject	a
bad	archive.

Upgrading	the	business	network
At	this	point	in	time,	we	will	assume	that	we	have	received	a	notification	and
that	we	are	in	charge	of	deploying	the	new	version.	Keep	in	mind	that	the
business	network	could	be	deployed	into	multiple	channels.	So,	while	the	BNA
deployment	is	not	required	on	every	peer,	it	is	required	for	every	channel	that
expects	to	run	those	transactions.

Our	deployment	will	consist	of	two	simple	steps:

1.	 Downloading	the	new	version
2.	 Updating	the	business	network

Downloading	a	new	version
Given	that	we	have	just	released	the	new	version	and	that	the	pipeline	has	added
the	binary	to	the	release,	we	can	simply	download	the	archive	using	the	curl
command,	as	follows:

curl	https://Github.com/HyperledgerHandsOn/trade-finance-

logistics/releases/download/v1.1.0/network.bna	-L	-o	network.bna

The	-L	option	is	used	to	tell	curl	to	follow	any	redirect	command.	Following	the
execution	of	this	command,	the	BNA	file	should	be	on	your	local	filesystem.

Updating	the	business	network
Since	the	BNA	content	is	actually	stored	in	the	world	state,	submitting	a	business
network	update	can	be	done	from	any	client	that	has	access	to	the	administrative
certificates.	

Thus,	to	update	the	network,	you	submit	the	following	command:

composer	network	install	-a	./network.bna	-c	<card-name>

composer	network	upgrade	-n	trade-finance-logistics	-v	0.0.1	-c	<card-name>

In	order	to	test	the	deployment	of	an	updated	BNA,	please	refer	to:	https://github.com/HyperledgerHand
sOn/trade-finance-logistics/tree/master/composer.

Note	that	the	other	dependent	components,	such	as	the	REST	gateway	and	the
application,	would	also	need	to	be	considered	in	a	production	deployment.

https://github.com/HyperledgerHandsOn/trade-finance-logistics/tree/master/composer

Summary
Hopefully,	this	chapter	will	have	given	you	a	good	overview	of	the	challenges
and	considerations	required	to	align	a	consortium	around	the	promotion	process.

Continuous	delivery	pipelines	are	an	essential	part	of	providing	the	velocity	to	a
consortium,	removing	manual	processes,	and	ensuring	that	every	organization
can	review	and	approve	code	changes	before	they	go	live.	We've	looked	at	some
of	the	key	events	such	as	the	pull	request	and	the	tag	release.

Over	the	course	of	this	chapter,	you	have	completed	the	configuration	of	a
complete	continuous	integration	pipeline,	including	testing	and	publication	of
the	business	network	archive.	Furthermore,	we	have	seen	how	we	can	protect	the
production-ready	code	by	protecting	the	master	branch	and	ensuring	that	every
change	is	subject	to	a	code	review	by	key	participants	from	organizations.	We
have	also	looked	at	how	we	can	ensure	we	maintain	the	provenance	of	each	Git
commit	using	gpg	signature.	Finally	we	have	reviewed	a	process	to	deploy
updates	in	a	trusted	manner.

One	thing	is	sure:	automation	is	the	key	to	agility—by	eliminating	repetitive
manual	tasks	and	providing	a	structure	to	how	we	modify	the	code,	we	enable
organizations	to	be	more	agile	and	respond	quickly,	whether	to	defects	or	new
requirements.	This	chapter	was,	of	course,	only	a	small	introduction	to	this
approach	and	its	associated	concepts;	some	of	these	topics	could	warrant	their
own	books.

Life	in	a	Blockchain	Network
Your	Fabric	network	should	now	be	set	up	and	running	your	application
connecting	different	entities	through	a	smart	contract	and	serving	users	through	a
web	interface.	In	addition,	to	help	your	developers	and	system	administrators
maintain	code,	push	updates,	and	manage	network	configuration,	you	should
have	instituted	a	process	whereby	system	testing	and	maintenance	can	be	done
with	safeguards	in	place	and	no	interruption	to	service.

Yet,	this	will	not	be	the	terminal	state	of	your	application.	Needs	and
expectations	evolve,	and	this	is	especially	true	for	an	application	that	involves
multiple	collaborating	entities,	all	of	whom	will	have	differing	requirements	at
different	points	in	time.	In	addition,	it	is	expected	that	software	itself	will
continually	change	and	evolve	even	if	the	nature	and	function	of	an	application
is	kept	intact.	Finally,	any	distributed	service-oriented	application	(a	description
that	can	be	applied	to	any	Hyperledger	Fabric	application)	must	be	prepared	for
the	nature	and	numbers	of	end-users	to	increase	or	decrease	over	time,
necessitating	changes	in	both	hardware	and	software	resource	allocation.

Over	the	lifetime	of	your	blockchain	application,	you	will	therefore	see	many
changes	that	necessitate	updates	to	code	and	configuration.	The	kinds	of	changes
listed	previously	are	not	unique	to	Fabric	networks,	or	even	blockchains	in
general,	but	the	mechanisms	we	will	need	to	use	and	the	considerations	in
selecting	those	mechanisms	are	quite	specific	to	the	platform.	These,	then,	will
be	the	main,	though	not	sole,	focus	of	this	chapter.	We	will	first	examine	the
different	ways	in	which	your	Fabric	application	may	need	to	be	modified,	with
specific	scenarios	illustrated	through	sample	code	and	configurations	and
guidelines	to	plan	for	system	upgrades.	We	will	then	discuss	application	and
network	membership	changes	and	the	relevant	considerations	that	apply	to
industry-scale	blockchain	applications.	In	the	backend	of	the	chapter,	we	will
delve	into	system	maintenance:	monitoring	the	health	of	your	application	and
system	resources	and	designing	or	upgrading	your	system	to	ensure	high
performance.

The	following	topics	will	be	covered	in	this	chapter:

Modifying	or	upgrading	a	Hyperledger	Fabric	application
Fabric	blockchain	and	application	life	cycle
Adding	the	new	organization	to	the	network
Modification	in	chaincode	logic
Dependency	upgrades	in	chaincode
Endorsement	policy	update
System	monitoring	and	performance
Profiling	containers	and	applications
Measuring	application	performance

Modifying	or	upgrading	a
Hyperledger	Fabric	application
The	design	of	a	generic	Hyperledger	Fabric	application	presented	in	Chapter
5,	Exposing	Network	Assets	and	Transactions,	offers	hints	about	the	types	of
upgrades	that	may	be	required	during	its	lifetime.	Let	us	examine	the	various
ways	in	which	the	requirements	of	a	Fabric	network	and	its	users	change	over
time:

Software	updates:	Changes	and	upgrades	are	an	integral	part	of	software
maintenance.	More	frequently,	modifications	are	required	to	fix	bugs,
performance	inefficiencies,	and	security	flaws	(for	example,	think	of	the
Windows	Update	Service).	Less	frequently,	though	almost	equally
inevitably,	major	design	changes	must	be	made	to	software	to	handle
unanticipated	challenges.	Also,	given	that	most	applications	depend	on
other	(third-party)	software,	any	upgrades	in	the	latter	trigger	corresponding
changes	in	the	former.	Think	of	Windows	Service	Packs	as	an	analogy.
In	the	Hyperledger	Fabric	world,	you	as	an	application	developer	or	system
administrator	must	support	both	application-level	upgrades	and	platform-
level	upgrades.	The	former	involves	bug	fixes	and	changes	in	application
logic	and	bug	fixes,	and	the	latter	involves	changes	to	the	underlying	Fabric
software.	Software	update	processes	are	well	known,	and	some	of	the
techniques	are	discussed	in	Chapter	5,	Exposing	Network	Assets	and
Transactions;	for	testing	and	reliable	failover	apply	to	bug	fixing	and
general	maintenance	as	well.

If	you	recall	the	3-layer	architecture	of	our	canonical	Fabric	application,
the	upper	layers,	which	consist	of	the	middleware	(exercising	the	Fabric
SDK),	the	web	servers,	and	user	interfaces,	are	typically	under	the
control	of	a	single	organization,	and	they	can	therefore	be	updated
through	processes	instituted	within	that	organization.	But,	as	we	have
seen	in	chapter	8	-	Agility	in	a	blockchain	network,	the	smart	contract,	or
the	chaincode,	is	a	special	case	as	it	is	a	piece	of	software	that	is
collectively	agreed	upon	and	developed	by	all	the	participating
organizations.	Therefore,	any	update	to	chaincode	must	also	be

https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=435&action=edit#post_176

consensus-driven,	and	it	is	not	as	straightforward	as	just	pushing	through
an	update	after	testing.	We	will	describe	the	chaincode	upgrade	process
through	examples	later	in	this	section.
Finally,	upgrades	to	the	Fabric	software	have	the	potential	to	impact
functionality	and	data	and	therefore	must	be	done	with	care.	We	will
describe	the	mechanisms	and	the	pitfalls	later	in	this	section.

Changing	resource	requirements:	The	resources	you	allocate	to	run	an
application	in	the	beginning	of	its	life	cycle,	just	like	the	application	code,
are	unlikely	to	satisfy	changing	user	requirements.	It	is	very	likely	that	your
application	receives	increasing	user	traffic	as	time	goes	by,	and	no	software
improvement	can	make	up	for	limits	in	hardware.	Similarly,	if	we	recall	the
requirements	for	RAS	(see	Chapter	5,	Exposing	Network	Assets	and
Transactions),	proper	functioning	of	a	distributed	application	requires
redundancy,	failover,	and	load	balancing	across	your	system	resources.
In	Fabric	terms,	what	this	translates	to	is	that	you	may	have	to	add	more
nodes	to	your	network.	You	may	need	more	peers	to	serve	transaction
endorsement	requests,	and	the	network	as	a	whole	may	need	more	orderer
nodes	to	handle	and	balance	the	load	of	a	currently	bottlenecked	ordering
service	(on	the	flipside,	nodes	can	be	removed	to	save	on	cost	if	traffic	is
too	light).	Otherwise,	you	may	need	extra	peer	nodes	in	an	organization	just
for	endorsement	corroboration	or	extra	orderer	nodes	for	more	reliable
distributed	consensus	(though	this	may	come	at	a	performance	cost).
Regardless	of	the	reason	for	additions	and	removals	of	nodes	in	your
network,	you	as	a	Fabric	developer	or	administrator	must	support	upgrades
of	this	nature,	and	we	will	see	how	this	can	be	done	later	in	this	section.
Changing	user	memberships:	Besides	variations	in	user	traffic,	one	must
be	prepared	for	changes	in	user	memberships	for	system	access	over	time.
In	Fabric	terms,	this	implies	adding	or	removing	users	or	clients	who	are
permitted	to	send	requests	to	the	application	and	view	application	state.
Within	an	organization,	there	will	always	be	a	need	to	add	or	remove	users
who	are	permitted	to	access	the	blockchain	and	to	elevate	or	decrease
privileges	granted	to	existing	users.	We	have	already	discussed	examples	of
membership	creations	and	authorizations	in	Chapter	5,	Exposing	Network
Assets	and	Transactions,	and	later	in	this	section,	we	will	see	how	channel
policies	can	be	updated	using	runtime	configurations.
Changing	application	policies:	Transactions	(chaincode	invocations)	in	a
Hyperledger	Fabric	application	must	satisfy	endorsement	policies,	which
are	collectively	decided	on	by	the	participants.	It	is	possible,	and	even

https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=435&action=edit#post_176
https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=435&action=edit#post_176

expected,	that	such	policies	will	change	over	time	for	a	variety	of	different
reasons,	including	performance	(which	we	will	discuss	in	the	latter	part	of
this	chapter.)	For	example,	an	endorsement	policy	for	the	approval	of	a
member	of	every	organization	may	be	relaxed	to	a	requirement	that	requires
just	two	organizational	endorsements.	On	the	flipside,	the	policy	can	be
made	more	stringent	to	overcome	the	lack	of	trust	among	the	blockchain
participants.	The	mechanisms	Fabric	offer	to	modify	endorsement	policies
will	be	discussed	through	examples	later	in	this	section.
Changing	network	configurations:	Finally,	there	will	always	be	a	need	to
modify	the	blockchain	network	itself	to	meet	enhanced	expectations.	More
organizations	may	want	to	participate	in	the	application	as	time	goes	by,
especially	if	the	initial	versions	of	the	application	prove	their	worth.	Some
organizations	may	want	to	leave	too,	for	several	reasons.	Even	within	a
given	organization,	there	may	be	a	need	to	expand	or	rebalance	the
resources	devoted	to	the	application	in	question.	Now,	even	though	most
distributed	applications	face	these	situations	requiring	enhancements	and
resource	reconfigurations,	blockchain	applications	have	special	needs
because	of	their	unique	nature.	Recall	that	a	blockchain	is	a	shared	ledger
that	must	be	validated	and	accepted	by	every	participating	network	peer
using	common,	agreed-upon	rules.	Therefore,	the	structure	and	properties
of	the	network	themselves	must	be	commonly	agreed	upon	and	recorded	on
the	ledger.	In	Hyperledger	Fabric	terms,	an	application	is	built	on	one	or
more	channels	(blockchain	instance)	whose	rules	and	contents	are	private	to
application	participants.	Therefore,	any	changes	in	the	network	requires
configuration	changes	being	applied	to	a	channel.	The	addition	of	a	new
organization	with	its	own	peer	set	or	the	removal	of	an	organization	will
require	a	channel	reconfiguration,	as	would	changes	in	peer	or	orderer
addresses,	and	the	selection	of	anchor	peers	within	organizations.	Other
examples	include	core	properties	of	the	channel,	such	as	block	size	and
timeouts;	channel	access	policies	for	reads,	writes,	and	administration
operations;	hashing	mechanisms;	and	consensus	mode	for	ordering	service.
Although	a	comprehensive	coverage	of	channel	configuration	use	cases	is
beyond	the	scope	of	this	chapter,	we	will	see	how	to	push	a	reconfiguration
in	a	Fabric	network	through	examples	later	in	this	section.

To	summarize,	changes	to	a	Fabric	application	require	not	just	the	usual	software
maintenance	procedures	of	code	and	configuration	changes,	tests	and	updates,
but	consensus-driven	operations	that	are	specific	to	blockchains.	In	the
remainder	of	this	section,	we	will	focus	on	the	two	main	modes	of	application

updates	supported	by	Hyperledger	Fabric.

Channel	configuration	updates:	This	covers	addition	and	removal	of
organizations,	resource	changes	(addition,	removal,	or	modifications	to	peer
and	orderer	nodes),	changes	in	channel	properties	(policy	and	block
creation	rules,	hashing,	and	consensus	mechanisms).
Smart	contract	updates:	This	covers	changes	to	chaincode	and	transaction
endorsement	policy.

Later,	we	will	briefly	touch	on	upgrades	to	the	Fabric	platform	software.

To	implement	such	upgrades,	we	will	need	to	augment	the	application	and	set	of
tools	that	we	created	from	Chapters	3	to	7,	with	suitable	mechanisms.
Fortunately,	the	designers	of	the	Fabric	platform	anticipated	the	kinds	of
evolutions	we	have	discussed	in	this	chapter,	and	the	SDK	we	used	to	build	the
initial	version	of	our	trade	application	(see	Chapter	5,	Exposing	Network	Assets
and	Transactions)	offers	the	capabilities	necessary	to	build	these	mechanisms.
Before	we	turn	to	implementation	details,	let	us	revisit	the	Fabric	transaction
pipeline	and	modify	it	to	incorporate	updates.

https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=435&action=edit#post_176

Fabric	blockchain	and	application	life
cycle
Consider	the	trade	scenario	that	we	have	realized	as	a	Fabric	application,	with
the	stages	illustrated	in	Figure	5.3:	The	stages	in	the	creation	and	operation	of	a
blockchain	application	(see	Chapter	5,	Exposing	Network	Assets	and
Transactions),	when	modified	to	incorporate	channel	and	chaincode	updates,	is
illustrated	in	Figure	9.1:	The	stages	in	the	lifecycle	of	a	blockchain	application
(we	omit	the	ledger	and	event	emissions	in	the	diagram	for	convenience,	as	they
are	not	required	to	explain	the	application	stages):

Figure	9.1:	The	stages	in	the	life	cycle	of	a	blockchain	application
This	diagram	is	not	meant	to	be	an	exhaustive	representation	of	all	possible	stages	of	a	Fabric
application,	but	rather	of	the	most	salient	ones.

As	we	can	see,	some	types	of	updates	require	many	more	operations	than	others.
Any	additions	of	endorsing	peer	nodes,	either	within	existing	organizations	or	in

newly	added	ones,	requires	the	explicit	joining	of	those	peers	to	the	channel	and
the	subsequent	installation	of	the	current	version	of	chaincode	on	those	peers.
No	explicit	instantiation	is	needed	on	those	peers;	the	gossip	protocol	among	the
network	peers	will	eventually	sync	the	latest	copy	of	the	shared	ledger	on	the
newly	added	ones.	The	smart	contract	modification	process	though	will	require
an	explicit	channel-wide	upgrade	following	the	installation	of	the	new	version	of
the	chaincode	on	the	peers.	This	upgrade	step	is	equivalent	to	the	original
instantiation	though	it	acts	on	the	current	state	rather	than	on	a	blank	ledger.	In
some	scenarios,	the	upgrade	of	chaincode	and	endorsement	policies	may
immediately	follow	a	channel	reconfiguration	for	the	addition	of	a	new
organization;	in	this	case,	the	installation	of	the	current	version	of	chaincode	on
the	new	peers	may	be	skipped	and	the	upgraded	chaincode	version	will	be
installed	directly.	We	will	describe	how	to	augment	our	trade	application	to
implement	such	a	system	upgrade	in	the	next	subsection.

Before	we	proceed,	let	us	understand	what	the	blockchain	looks	like	when	the
system	undergoes	different	kinds	of	changes.	Figure	9.2	illustrates	the	sections
of	a	blockchain	with	different	kinds	of	blocks	added	for	different	application
operations:

Figure	9.2:	A	section	of	a	blockchain	with	configuration	blocks,	blocks	containing	deployment	transactions,	and	regular	chaincode
transactions

As	we	can	see,	our	blockchain	(or	in	other	words,	the	shared	ledger	transaction
log)	begins	with	a	genesis	block	(the	first	configuration	block	on	the	channel),
which	contains	the	initial	configuration	of	the	channel.	The	next	step	is	the
deployment	and	instantiation	of	the	initial	version	of	the	chaincode	and
subsequently	regular	operation	(chaincode	invocations)	ensues.	At	some	point,	a

new	organization	with	peers	can	be	added,	which	results	in	another	configuration
block	being	added	to	the	chain,	overriding	the	previous	configuration	block.
Similarly,	a	new	version	of	chaincode	can	be	created	and	upgraded,	with	the
upgrade	being	recorded	in	a	block.	In	between	these	configuration	and
deployment	blocks,	regular	chaincode	transactions	can	occur,	and	depending	on
the	configured	block	size,	one	or	more	transactions	can	be	bundled	in	a	block
and	appended	to	the	chain.	Let	us	now	see	how	to	augment	our	trade	application
to	implement	the	features	we	have	discussed	in	this	chapter	thus	far.

Channel	configuration	updates
As	mentioned	earlier	in	this	chapter,	there	are	many	reasons	why	a	channel
configuration	may	have	to	be	changed.	As	channel	behavior	is	completely
dictated	by	its	configuration,	and	any	update	is	recorded	on	the	blockchain,
hence	overriding	the	earlier	configuration,	this	is	a	very	sensitive	operation	that
must	be	restricted	to	privileged	users,	just	like	the	initial	portions	of	our
application	creation	steps	such	as	channel	creation	and	joining	(see	Chapter
5,	Exposing	Network	Assets	and	Transactions)	were.	An	exhaustive	discussion
and	demonstration	of	channel	configuration	changes	is	beyond	the	scope	of	this
book,	but	we	will	show	the	mechanism	of	updates	and	a	way	to	wrap	those
mechanisms	in	our	application;	this	mechanism	and	process	can	be	applied	to
any	configuration	change.

For	demonstration,	we	will	use	the	common	situation	where	a	new	organization
and	peers	must	be	added	to	the	application.	Consider	our	trade	scenario	where
thus	far,	an	exporter	and	its	bank	have	shared	an	organization	whose	MSP	and
peer	is	maintained	by	the	latter.	The	importer	and	its	bank	belong	to	a	single
organization	as	well,	the	logic	being	that	banks	have	more	incentive	as	well	as
resources	to	maintain	peers	and	MSPs.	But	this	logic	may	not	hold	forever.	Let's
say	our	exporter,	who	started	out	as	a	small-scale	operator,	gains	higher	profit
and	a	higher	reputation	for	honesty	as	well	as	quality	over	time.	Now	a	large-
scale	exporter	of	raw	material	with	huge	cash	reserves	and	clout	in	the	market,	it
has	an	incentive	to	join	a	trade	network	on	blockchain	as	a	peer	rather	than	a
dependent	of	a	bank.	It	also	maintains	bank	accounts	with	different	banks	and
therefore	has	the	need	and	potential	to	participate	in	multiple	blockchains
(channels)	simultaneously.	It	would	like	to	continue	to	participate	in	the	trade
channel	and	wrapping	application,	but	in	its	own	organization,	running	its	own
MSP	and	its	own	network	peer,	independent	of	the	bank.

The	resulting	network	that	we	must	create	is	illustrated	in	Figure	9.3:	The
augmented	trade	network	with	an	organization,	MSP,	and	peer	for	an	exporter
(or	exporting	entity):

https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=435&action=edit#post_176

Figure	9.3:	The	augmented	trade	network	with	an	organization,	MSP,	and	peer	for	an	exporter	(or	exporting	entity)

We'll	call	the	new	organization	ExportingEntityOrg,	its	MSP	ExportingEntityOrgMSP,	and
the	peer	exporting	entity.	This	is	because	the	names	exporter,	ExporterOrg,	and
ExporterOrgMSP	have	already	been	taken	in	our	network	to	represent	the	exporter's
bank;	new	organizations	and	peers	must	have	unique	names.

Prerequisites	for	adding	a	new
organization	to	the	network
The	tools	you	need	to	upgrade	your	network	are	similar	to	the	ones	that	were
used	in	Chapter	3,	Setting	the	Stage	with	a	Business	Scenario:

1.	 Clone	the	Fabric	source	code	repository:
1.	 Run	make	docker	to	build	Docker	images	for	the	peers	and	orderers.
2.	 Run	make	configtxlator	to	generate	tools	necessary	to	run	the	network

creation	commands	described	in	this	section	(we	will	use	configtxlator
when	we	turn	our	attention	to	the	middleware	code)

2.	 In	addition,	we	assume	that	the	reader	followed	the	procedures	described	in	
Chapter	3,	Setting	the	Stage	with	a	Business	Scenario,	and	has	already
created	the	channel	configuration	and	crypto	material	files	for	the	earlier	4-
organization	network.

If	you	recall,	in	Chapter	3,	Setting	the	Stage	with	a	Business	Scenario,	we	created
channel	artifacts	and	crypto	material	for	the	four	organizations,	consisting	of	the
genesis	block,	the	initial	channel	configuration,	the	anchor	peer	configuration	for
each	organization,	and	certificates	and	signing	keys	for	all	network	operations
involving	the	peers,	clients,	and	MSPs.	The	configurations	were	defined	in
configtx.yaml	and	crypto-config.yaml,	respectively	in	the	network	folder,	and
processed	using	the	configtxgen	and	cryptogen	tools.	Clearly,	these	configurations
must	be	modified	to	add	a	new	organization,	but	changing	configurations	can	be
messy.	The	good	news	is	that	we	can	increment	our	network	by	creating
additional	configuration	files	and	keeping	the	original	ones	intact.	That	way,	it'll
be	easy	for	an	administrator	to	track	the	evolution	of	the	organization	structure
and	resources.	Our	incremental	configuration	files	are	defined	in	the
network/add_org/	folder.

https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=435&action=edit#post_547
https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=435&action=edit#post_547

Generating	network	cryptographic
material
The	crypto-config.yaml	file	contains	information	only	about	the	new	organization,
sufficient	to	generate	certificates	and	signing	keys:

PeerOrgs:	

		#	ExportingEntityOrg	

		-	Name:	ExportingEntityOrg	

				Domain:	exportingentityorg.trade.com	

				EnableNodeOUs:	true	

				Template:	

						Count:	1	

				Users:	

					Count:	1	

As	we	can	see,	the	specification	is	identical	to	the	ones	we	defined	for	our	initial
four	organizations,	except	that	the	MSP	name	and	organization	domain	reflect
the	nature	of	the	exporting	entity	organization.	To	generate	the	crypto	material
just	for	this	organization,	run	the	cryptogen	command	as	in	Chapter	5,	Exposing
Network	Assets	and	Transactions,	but	this	time	using	the	configuration	file
defined	in	the	add_orgs	folder:

cryptogen	generate	--config=./add_org/crypto-config.yaml	

The	output	is	saved	to	crypto-config/peerOrganizations,	where	you	will	see	a	folder
named	exportingentityorg.trade.com	in	addition	to	the	existing	organization's
folders.	This	folder	contains	the	keys	and	certificates	for	our	new	organization.

https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=435&action=edit#post_176

Generating	channel	artifacts
Similarly,	the	configtx.yaml	contains	only	the	specification	of	the	exporting	entity's
organization	in	the	organizations	section,	as	follows:

Organizations:	

		-	&ExportingEntityOrg	

				Name:	ExportingEntityOrgMSP	

				ID:	ExportingEntityOrgMSP	

				MSPDir:	../crypto-config/peerOrganizations/exportingentityorg.trade.com/msp	

				AnchorPeers:	

						-	Host:	peer0.exportingentityorg.trade.com	

								Port:	7051

This	specification	essentially	replicates	that	of	every	other	organization	and	peer;
only	the	names	and	paths	are	modified	to	identify	and	set	up	the	new
organization	(that	this	assumes	a	crypto-config	folder	to	have	already	been
generated	in	the	current	directory).	To	build	the	incremental	channel
configuration,	run	the	following	command:

FABRIC_CFG_PATH=$PWD/add_org	&&	configtxgen	-printOrg	ExportingEntityOrgMSP	>	

./channel-artifacts/exportingEntityOrg.json	

Here,	we	encounter	our	first	difference	from	the	procedure	followed	in	Chapter
3,	Setting	the	Stage	with	a	Business	Scenario;	instead	of	building	separate	files
for	configuration	blocks,	anchor	peers,	and	so	on,	we	just	build	a	JSON	spec	that
contains	all	the	relevant	information,	including	policy	specification	and
certificates	for	an	admin	user,	the	CA	root,	and	the	TLS	root	for	the	exporting
entity's	organization,	and	save	it	to	the	channel-artifacts	folder.	Later	in	this
section,	we	will	use	this	JSON	in	our	channel	configuration	update	procedure.

To	ensure	that	configtxgen	looks	for	the	configtx.yaml	in	the	add_org	directory,	we	must	temporarily
change	the	FABRIC_CFG_PATH	environment	variable.

https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=435&action=edit#post_547

Generating	the	configuration	and
network	components	in	one	operation
You	can	also	carry	out	all	the	preceding	operations	using	the	trade.sh	script.	Just
run	the	following	command	from	within	the	network	folder:

./trade.sh	createneworg

The	channel	name	is	implicitly	assumed	to	be	tradechannel.

This	command,	in	addition	to	creating	cryptographic	material	and	channel
configuration,	generates	a	docker-compose	configuration	for	just	for	the	new
organization	in	add_org/docker-compose-exportingEntityOrg.yaml.	It	runs	the	following
services:

One	instance	of	a	Fabric	peer	for	the	exporting	entity's	organization
One	instance	of	a	Fabric	CA	for	the	exporting	entity's	organization

The	specification	and	the	dependencies	are	like	those	we	encountered	in	docker-
compose-e2e.yaml	in	Chapter	3,	Setting	the	Stage	with	a	Business	Scenario,	as
follows:

services:	

		exportingentity-ca:	

				image:	hyperledger/fabric-ca:$IMAGE_TAG	

				environment:	

						-	FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server	

						-	FABRIC_CA_SERVER_CA_NAME=ca-exportingentityorg	

						-	FABRIC_CA_SERVER_TLS_ENABLED=true	

						-	FABRIC_CA_SERVER_TLS_CERTFILE=/etc/hyperledger/fabric-ca-server-

config/ca.exportingentityorg.trade.com-cert.pem	

						-	FABRIC_CA_SERVER_TLS_KEYFILE=/etc/hyperledger/fabric-ca-server-

config/fc435ccfdaf5d67251bd850a8620cde6d97a7732f89170167a02970c754e5450_sk	

				ports:	

						-	"11054:7054"	

				command:	sh	-c	'fabric-ca-server	start	--ca.certfile	/etc/hyperledger/fabric-ca-

server-config/ca.exportingentityorg.trade.com-cert.pem	--ca.keyfile	

/etc/hyperledger/fabric-ca-server-

config/fc435ccfdaf5d67251bd850a8620cde6d97a7732f89170167a02970c754e5450_sk	-b	

admin:adminpw	-d'	

				volumes:	

						-	../crypto-

config/peerOrganizations/exportingentityorg.trade.com/ca/:/etc/hyperledger/fabric-ca-

server-config	

				container_name:	ca_peerExportingEntityOrg	

				networks:	

https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=435&action=edit#post_547

						-	trade	

		peer0.exportingentityorg.trade.com:	

				container_name:	peer0.exportingentityorg.trade.com	

				extends:	

						file:	../base/peer-base.yaml	

						service:	peer-base	

				environment:	

						-	CORE_PEER_ID=peer0.exportingentityorg.trade.com	

						-	CORE_PEER_ADDRESS=peer0.exportingentityorg.trade.com:7051	

						-	CORE_PEER_GOSSIP_BOOTSTRAP=peer0.exportingentityorg.trade.com:7051	

						-	CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.exportingentityorg.trade.com:7051	

						-	CORE_PEER_LOCALMSPID=ExportingEntityOrgMSP	

				volumes:	

								-	/var/run/:/host/var/run/	

								-	../crypto-

config/peerOrganizations/exportingentityorg.trade.com/peers/peer0.exportingentityorg.trade.com/msp:/etc/hyperledger/fabric/msp

	

								-	../crypto-

config/peerOrganizations/exportingentityorg.trade.com/peers/peer0.exportingentityorg.trade.com/tls:/etc/hyperledger/fabric/tls

	

								-	peer0.exportingentityorg.trade.com:/var/hyperledger/production	

				ports:	

						-	11051:7051	

						-	11053:7053	

						-	11055:6060	

				networks:	

						-	trade	

This	file	is	generated	using	the	template	YAML	add_org/docker-compose-
exportingEntityOrg-template.yaml,	with	the	CA	key	filename	(denoted	by	the	variable
EXPORTINGENTITY_CA_PRIVATE_KEY)	in	both	the	FABRIC_CA_SERVER_TLS_KEYFILE	and	in	the
command	replaced	with	the	secret	key	filename	in	crypto-
config/peerOrganizations/exportingentityorg.trade.com/ca/,	which	in	our	example
preceding	is	fc435ccfdaf5d67251bd850a8620cde6d97a7732f89170167a02970c754e5450_sk.

This	key	filename	will	vary	with	every	instance	of	execution	of	the	cryptogen	tool.

In	addition,	note	that	the	certificate	filename	in	the	environment	variables
exportingentity-ca:FABRIC_CA_SERVER_TLS_CERTFILE	and	the	paths	specified	in	the
volumes	section	match	what	was	generated	using	cryptogen.	The	IDs,	hostnames,
and	port	values	match	what	was	specified	in	the	congfigtx.yaml	file.	Finally,	we
ensure	that	the	container	ports	are	mapped	to	unique	ports	(in	the	11,000s	range)
to	avoid	conflicts	with	the	ports	exposed	by	the	containers	of	the	peers	and
MSPs	of	the	older	organizations.

Launching	the	network	components
for	the	new	organization
To	start	the	peer	and	MSP	for	our	new	organization,	just	run	the	following
command:

docker-compose	-f	add_org/docker-compose-exportingEntityOrg.yaml	up

You	can	run	this	as	a	background	process	and	redirect	the	standard	output	to	a
log	file	if	you	choose.	Otherwise,	you	will	see	the	various	containers	starting	up
and	logs	from	each	displayed	on	the	console.	From	a	different	terminal	window,
if	you	run	docker	ps	-a,	you	will	see	the	following	two	additional	containers:

CONTAINER	ID				IMAGE				COMMAND				CREATED				STATUS				PORTS				NAMES	

02343f585218				hyperledger/fabric-ca:latest				"sh	-c	'fabric-ca-se..."				16	seconds	

ago				Up	16	seconds				0.0.0.0:11054->7054/tcp				ca_peerExportingEntityOrg	

a439ea7364a8				hyperledger/fabric-peer:latest				"peer	node	start"				16	seconds	ago				

Up	16	seconds				0.0.0.0:11055->6060/tcp,	0.0.0.0:11051->7051/tcp,	0.0.0.0:11053-

>7053/tcp				peer0.exportingentityorg.trade.com	

You	can	launch	the	network	using	the	script	file	in	the	repository	as	follows:

./trade.sh	startneworg	

The	channel	name	is	implicitly	assumed	to	be	tradechannel.

This	will	start	the	containers	in	the	background,	and	you	can	view	the	logs	in
logs/network-neworg.log.	Now	our	network	has	5	peers,	5	MSPs,	and	an	orderer
running	in	separate	containers.	We	are	now	ready	to	begin	the	process	of
reconfiguring	the	channel	to	accept	the	new	organization.

To	stop	the	containers	associated	with	the	exporting	entity's	organization,	you	can	just
run	./trade.sh	stopneworg.

This	will	not	clear	out	all	the	volumes	(run	docker	volume	is	to	check)	as	the
containers	of	the	initial	4-org	network	are	still	running.	Only	after	you	bring	the
own	entire	network,	you	will	be	able	to	clear	out	the	remaining	active	volumes.)

Updating	the	channel	configuration
Now	we	will	turn	our	attention	to	the	middleware.	In	Chapter	5,	Exposing	Network
Assets	and	Transactions,	when	we	created	tradechannel,	the	blockchain	was
initialized	with	the	genesis	block	created	using	the	configtxgen	tool.	The	genesis
block	happens	to	be	the	first	configuration	block	of	a	channel.	Subsequent
channel	configuration	changes	involve	appending	new	configuration	blocks	to
the	channel,	each	uniquely	versioned,	and	the	latest	overriding	the	previous	ones.
In	the	upgrade	scenario,	it's	the	configuration	in	the	genesis	block	that	will	be
overridden,	as	we	assume	that	no	other	changes	have	been	made	since	our
channel	was	created	and	made	ready	for	use	in	Chapter	5,	Exposing	Network
Assets	and	Transactions.

The	logic	to	upgrade	channel	configurations	lies	in	upgrade-channel.js	in	the
middleware	folder	in	our	code	repository,	and	it	is	based	on	the	Fabric	SDK	Node
API.	The	following	prerequisites	are	also	required:

configtxlator:	This	was	built	from	the	Fabric	source	code	earlier	in	this
chapter.	Please	ensure	that	it	lies	in	your	system	path.
jq:	This	is	a	command-line	JSON	processor,	for	creating	and	parsing	JSON
objects.	On	an	Ubuntu	system,	you	can	install	this	using	apt-get	install	jq.
Please	ensure	that	it	lies	in	your	system	path	too.

In	the	upgradeChannel	function,	there	is	boilerplate	code	to	create	client	and	channel
objects,	which	the	reader	should	already	be	familiar	with.	The	channel	upgrade
procedure	requires	the	collection	of	signatures	over	the	new	configuration	from
an	administrative	user	of	every	existing	organization	(4	in	our	network)	just	as	in
the	channel	creation	procedure.	But	many	additional	steps	are	required	before
signatures	can	be	generated	and	collected.	First,	we	will	need	to	fetch	the	latest
configuration	block	from	the	orderer.	We	do	this	in	the	code	using	the	following
function	call:

channel.getChannelConfigFromOrderer();	

This	returns	a	block	configuration_block,	whose	config	field	contains	the	current
channel	configuration.	The	version	of	this	configuration	can	be	extracted	from

the	sequence	field	of	the	configuration	as	follows:
configuration_block.config.sequence.	The	full	configuration	spec	is	defined	in	the
Fabric	source	code	as	a	protobuf	(common.Config),	and	its	examination	is	left	as	an
exercise	to	the	reader.

In	the	code,	we	now	create	a	folder	to	store	temporary	files	that	will	be	created
in	the	subsequent	steps.	These	files	are	created	using	the	configtxlator	tool,	which
we	use	in	the	absence	of	equivalent	API	functions	in	the	Fabric	SDK	Node	API:

if(!fs.existsSync('./tmp/'))	{

		fs.mkdirSync('./tmp');

}

Having	obtained	the	configuration,	we	need	to	dump	it	in	the	protobuf	format	to
a	file:

fs.writeFileSync('./tmp/config.pb',	configuration_block.config.toBuffer());	

Next,	we	need	to	decode	this	configuration	into	JSON	format	using	configtxlator.
We	do	this	purely	for	convenience	because	it	is	easier	to	parse	a	JSON	and	apply
our	intended	configuration	changes	to	it:

cproc.execSync('configtxlator	proto_decode	--input	./tmp/config.pb	--type	common.Config	

|	jq	.	>	./tmp/config.json');

This	results	in	the	creation	of	a	file	named	config.json	in	the	temporary	folder.	If
you	view	the	contents	of	this	file,	you	will	see	the	underlying	configuration
structure	of	the	channel	and	the	various	properties	that	can	be	updated.

Now	we	need	to	append	the	configuration	of	the	new	(exporting	entity)
organization	to	it.	The	latter	is	contained	in	the	file	exportingEntityOrg.json,	created
using	the	configtxgen	tool	earlier	in	this	section	and	saved	to	network/channel-
artifacts.	We	create	the	new	appended	configuration	modified_config.json	using	the
jq	tool	as	follows:

cproc.execSync('jq	-s	\'.[0]	*	{"channel_group":{"groups":{"Application":{"groups":	

{"ExportingEntityOrgMSP":.[1]}}}}}\'	./tmp/config.json	../network/channel-

artifacts/exportingEntityOrg.json	>	./tmp/modified_config.json');

If	you	view	the	contents	of	modified_config.json,	you	will	see	that	it	is	very	similar
in	structure	to	config.json;	the	difference	is	that	it	contains	the	definitions	of	5
organizations	where	the	latter	contains	only	4.	We	now	convert	this	new

configuration	to	protobuf	format	(modified_config.pb)	so	configtxlator	can	process	it:

cproc.execSync('configtxlator	proto_encode	--input	./tmp/modified_config.json	--type	

common.Config	--output	./tmp/modified_config.pb');	

Note	that	we	use	the	same	protobuf	schema	(common.Config)	that	we	used	to
decode	the	configuration	obtained	from	the	orderer.

Finally,	we	will	use	configtxlator	to	compute	the	delta	(or	difference)	between	the
original	and	the	new	configuration	protobufs:

cproc.execSync('configtxlator	compute_update	--channel_id	'	+	channel_name	+	'	--

original	./tmp/config.pb	--updated	./tmp/modified_config.pb	--output	

./tmp/exportingEntityOrg_update.pb');	

The	generated	protobuf	exportingEntityOrg_update.pb	contains	full	definitions	of	the
exportingentityOrg	and	pointers	to	the	existing	4	organizations.	This	is	sufficient
for	a	channel	configuration	update	as	the	full	definitions	of	the	other
organizations	are	already	contained	in	the	previous	configuration	block	(in	our
example,	the	genesis	block).

Now	all	we	have	to	do	is	read	the	delta	configuration	and	get	admin	signatures
from	each	of	the	existing	four	organizations.	The	code	for	this	is	similar	to	the
code	we	examined	in	the	channel	creation	stage:

config	=	fs.readFileSync('./tmp/exportingEntityOrg_update.pb');	

var	signature	=	client.signChannelConfig(config);	

signatures.push(signature);	

All	we	need	to	do	now	is	create	an	update	request	and	send	it	to	the	orderer:

let	tx_id	=	client.newTransactionID();	

var	request	=	{	

		config:	config,	

		signatures	:	signatures,	

		name	:	channel_name,	

		orderer	:	orderer,	

		txId		:	tx_id	

};	

client.updateChannel(request);	

The	request	structure	can	contain	either	a	config	or	an	envelope	field.	The	latter	has	the
common.Envelope	protobuf	format	and	is	a	wrapper	around	the	configuration	we	just	created.
The	Fabric	orderer	will	accept	either.	Using	envelope	instead	of	config	is	left	as	an	exercise	to
the	reader.

To	push	the	channel	configuration	update,	just	run:

node	run-upgrade-channel.js	

Please	ensure	that	the	original	4-org	network	from	Chapter	5,	Exposing	Network	Assets	and
Transactions	is	up	and	running,	and	that	the	channel	creation	step	(see
middleware/createTradeApp.js	for	an	example)	has	already	been	performed.

Adding	the	new	organization	to	the
network
The	new	organization	is	logically	added	to	the	channel	through	a	configuration
update.	To	physically	add	it	to	our	trade	network	and	make	it	participate	in
shared	ledger	transactions,	we	need	to:

Join	the	exporting	entity	organization's	peers	to	tradechannel
Install	the	current	version	of	the	chaincode	on	the	newly	added	peers

The	good	news	is	that	there	is	nothing	new	to	be	done	here.	We	have	already
implemented	functions	for	both	these	procedures	(joinChannel	in	join-channel.js	and
installChaincode	in	install-chaincode.js,	respectively),	and	we	just	need	to	exercise
them	on	behalf	of	the	new	organization's	resources.

Before	running	these	steps,	we	must	augment	the	network	configuration	used	by
the	middleware.	Earlier,	we	used	config.json	in	the	middleware	folder	to	represent
the	4-organization	network.	We	will	now	replace	that	with	config_upgrade.json	in
the	same	folder.	All	this	file	contains	is	one	extra	property	in	trade-network
called	exportingentityorg	(which	is	how	the	middleware	code	will	recognize	our
new	organization)	as	follows:

"exportingentityorg":	{	

		"name":	"peerExportingEntityOrg",	

		"mspid":	"ExportingEntityOrgMSP",	

		"ca":	{	

				"url":	"https://localhost:11054",	

						"name":	"ca-exportingentityorg"	

		},	

		"peer1":	{	

				"requests":	"grpcs://localhost:11051",	

				"events":	"grpcs://localhost:11053",	

				"server-hostname":	"peer0.exportingentityorg.trade.com",	

				"tls_cacerts":	"../network/crypto-

config/peerOrganizations/exportingentityorg.trade.com/peers/peer0.exportingentityorg.trade.com/msp/tlscacerts/tlsca.exportingentityorg.trade.com-

cert.pem"	

		}	

}	

Note	that	the	ports	indicated	previously	match	those	specified	in	the	docker-
compose-exportingEntityOrg.yaml	file	we	used	to	start	the	MSP	and	peer	for	this

organization.	The	path	to	the	certificate	matches	what	was	generated	using
cryptogen	earlier	in	this	section,	and	the	names	match	what	was	specified	in	the
configtx.yaml.	The	organization	has	just	one	peer,	which	is	exactly	what	we
specified	in	the	latter	file.

To	ensure	that	the	middleware	functions	load	the	right	configuration,	we	need	to
change	the	value	of	the	networkConfig	variable	in	constants.js	from	config.json	to
config_upgrade.json.	We	do	that	in	the	file	new-org-join-channel.js	as	follows:

var	Constants	=	require('./constants.js');	

Constants.networkConfig	=	'./config_upgrade.json';

Now	we	are	ready	to	run	the	channel	join	procedure	for	the	single	peer
belonging	to	the	exporting	entity's	organization.	The	code	for	this	in	new-org-join-
channel.js	is	as	follows:

var	joinChannel	=	require('./join-channel.js');	

Client.addConfigFile(path.join(__dirname,	Constants.networkConfig));	

var	ORGS	=	Client.getConfigSetting(Constants.networkId);	

joinChannel.joinChannel('exportingentityorg',	ORGS,	Constants);	

The	call	to	joinChannel	has	the	effect	of	joining	the	peer	whose	details	are
specified	in	the	trade-network:exportingentityorg:peer1	section	in	config_upgrade.js	to
tradechannel.	To	execute	this	operation,	just	run	the	following:

node	new-org-join-channel.js	

The	new	peer	is	now	part	of	the	channel	and	will	eventually	sync	the	contents	of
the	shared	ledger	for	the	channel	through	the	gossip	protocol	from	the	existing
network	peers.

Similarly,	we	can	install	the	chaincode	on	this	peer	by	calling	the	installChaincode
function	in	install-chaincode.js.	But	as	it	happens,	we	would	like	to	demonstrate
the	chaincode	upgrade	capability	at	this	time.	So	instead	of	running	the
installation	procedure	twice,	we	can	straightaway	install	the	new	version	on	all	5
peers.	We	will	describe	that	procedure	in	the	next	section.

Smart	contract	and	policy	updates
As	we	observed	in	the	early	part	of	this	chapter,	the	smart	contract	binding	peers
on	a	shared	channel	is	subject	to	change	for	a	variety	of	reasons	ranging	from
code	fixes	to	evolving	needs	of	the	participants.	Regardless	of	the	reason,	the
mechanism	offered	by	Hyperledger	Fabric	and	the	semantics	of	the	change
remain	constant.	The	mechanism	is	what	we	we'll	demonstrate	in	this	section.

Closely	associated	with	the	smart	contract,	at	least	in	the	Fabric	view	of	a
blockchain,	is	the	endorsement	policy	that	must	be	satisfied	for	the	result	of	a
transaction	to	be	committed	to	the	shared	ledger.	As	we	will	see,	the	same
mechanism	that	can	upgrade	a	smart	contract	can	be	used	to	modify	the
endorsement	policy	too.

Modification	in	chaincode	logic
Let	us	first	consider	a	scenario	that	requires	us	to	update	(or	upgrade)	our	trade
chaincode.	The	addition	of	a	new	organization,	which	we	just	carried	out	in	the
previous	section,	necessitates	certain	changes	in	chaincode.	As	an	example,	let
us	consider	the	following	code	snippet	in	the	acceptTrade	function	in
chaincode/src/github.com/trade_workflow/tradeWorkflow.go:

//	Accept	a	trade	agreement	

func	(t	*TradeWorkflowChaincode)	acceptTrade(stub	shim.ChaincodeStubInterface,	

creatorOrg	string,	creatorCertIssuer	string,	args	[]string)	pb.Response	{	

		//	Access	control:	Only	an	Exporter	Org	member	can	invoke	this	transaction	

		if	!t.testMode	&&	!authenticateExporterOrg(creatorOrg,	creatorCertIssuer)	{	

				return	shim.Error("Caller	not	a	member	of	Exporter	Org.	Access	denied.")	

		}	

The	preceding	access	control	logic	dictates	that	only	a	member	of	the	exporter's
organization	may	accept	a	trade.	In	our	earlier	4-organization	network,	this	made
sense	because	both	the	exporter	and	the	exporter's	bank	were	part	of	one
organization,	and	we	relied	on	further	access	control	at	higher	layers	to
distinguish	bankers	from	their	clients	for	the	purpose	of	executing	chaincode
operations.	But	now	that	we	have	added	an	organization	to	serve	the	exporter's
needs	independent	of	its	bank	(referring	to	the	exporter	now	as	an	exporting
entity),	we	ought	to	change	the	access	control	logic	accordingly.	And	this	is	not
the	only	function	that	requires	such	a	modification	in	access	control	logic.

Therefore,	we	need	to	produce	a	new	version	of	the	chaincode.	In	our	code
repository,	this	can	be	found	in	chaincode/src/github.com/trade_workflow_v1/.	The
contents	of	the	code,	it	will	look	almost	identical	to	the	original	version	except
for	some	of	these	access	control	filter	rules.	Let's	look	at	a	similar	code	snippet
in	the	acceptTrade	function	in
chaincode/src/github.com/trade_workflow_v1/tradeWorkflow.go:

//	Accept	a	trade	agreement	

func	(t	*TradeWorkflowChaincode)	acceptTrade(stub	shim.ChaincodeStubInterface,	

creatorOrg	string,	creatorCertIssuer	string,	args	[]string)	pb.Response	{	

		//	Access	control:	Only	an	Exporting	Entity	Org	member	can	invoke	this	transaction	

		if	!t.testMode	&&	!authenticateExportingEntityOrg(creatorOrg,	creatorCertIssuer)	{	

				return	shim.Error("Caller	not	a	member	of	Exporting	Entity	Org.	Access	denied.")	

		}	

Note	that	the	function	authenticateExporterOrg	has	been	replaced	with
authenticateExportingEntityOrg.	If	you	view	the	contents	of	the	accessControlUtils.go
file,	you	will	notice	that	the	definition	for	the	latter	function	has	been	added.

In	a	real-world	application	involving	various	organizations,	changes	in	chaincode	would	have
to	be	made	through	collaboration	and	consultation,	passed	around	to	the	different
stakeholders	though	an	out-of-band	mechanism,	examined,	vetted,	and	tested,	before	they	are
deemed	to	be	ready	for	deployment	to	the	network.

Dependency	upgrades	in	chaincode
Access	control	logic	is	not	the	only	thing	we	will	need	to	change	in	the
chaincode.	We	use	a	somewhat	contrived	scenario	where	the	initial	version	of
the	chaincode	was	created	when	only	an	early	version	of	Fabric	(say	v1.0)	was
available.	If	you	examine	the	logic	to	extract	the	MSP	identity	of	the
organization	from	which	the	transaction	was	issued	as	well	as	the	common	name
in	the	certificate	issued	to	the	submitter	of	the	chaincode	transaction,	it	is	done
manually	using	the	standard	Go	libraries.	This	is	illustrated	in	the	following	code
snippet	in	the	getTxCreatorInfo	function	in
chaincode/src/github.com/trade_workflow/accessControlUtils.go:

creatorSerializedId	:=	&msp.SerializedIdentity{}	

err	=	proto.Unmarshal(creator,	creatorSerializedId)	

......	

certASN1,	_	=	pem.Decode(creatorSerializedId.IdBytes)	

cert,	err	=	x509.ParseCertificate(certASN1.Bytes)	

......	

return	creatorSerializedId.Mspid,	cert.Issuer.CommonName,	nil	

When	the	Fabric	platform	was	upgraded	to	v1.1,	a	new	package	called	cid	was
implemented	to	perform	the	preceding	operations	and	hide	details	of	the
protobuf	structure	and	the	certificate	parsing.	To	make	our	chaincode	cleaner	and
more	aligned	with	Fabric	changes,	it	is	necessary	to	upgrade	our	preceding	logic
to	use	the	new	package.	This	is	what	we	do	in	our	upgraded	version	of	chaincode
in	chaincode/src/github.com/trade_workflow_v1/accessControlUtils.go:

import	(

		

		"github.com/hyperledger/fabric/core/chaincode/lib/cid"	

		

)	

......	

func	getTxCreatorInfo(stub	shim.ChaincodeStubInterface)	(string,	string,	error)	{	

		

		mspid,	err	=	cid.GetMSPID(stub)	

		

		cert,	err	=	cid.GetX509Certificate(stub)	

		

		return	mspid,	cert.Issuer.CommonName,	nil	

}	

Ledger	resetting
A	chaincode	upgrade	is	like	instantiation,	and	both	result	in	the	execution	of	the
Init	function.	In	the	initial	version	of	the	chaincode,	many	ledger	values	were
initialized,	but	unless	we	change	that	logic,	those	initial	values	will	overwrite	the
current	state	of	the	ledger.	Therefore,	we	add	code	to	the	Init	function	in
chaincode/src/github.com/trade_workflow_v1/tradeWorkflow.go	to	emulate	a	no-op,	but	we
also	leave	the	original	logic	intact	to	ensure	that	values	can	be	overwritten
during	an	upgrade	if	there	is	a	business	need	to	do	so,	as	the	following	code
snippet	illustrates:

func	(t	*TradeWorkflowChaincode)	Init(stub	shim.ChaincodeStubInterface)	pb.Response	{	

		

		//	Upgrade	Mode	1:	leave	ledger	state	as	it	was	

		if	len(args)	==	0	{	

				return	shim.Success(nil)	

		}	

		//	Upgrade	mode	2:	change	all	the	names	and	account	balances	

		if	len(args)	!=	8	{	

				

Endorsement	policy	update
Our	original	transaction	endorsement	policy	required	a	member	of	each	of	the	4
organizations	to	endorse	(sign)	a	chaincode	invocation	transaction.	Now	that	we
have	added	a	new	organization,	we	must	update	that	policy	to	require	a	signature
from	a	member	of	each	of	the	5	organizations.	In	the	middleware	folder,	this	new
policy	is	defined	in	constants.js	as	follows:

var	FIVE_ORG_MEMBERS_AND_ADMIN	=	[{	

		role:	{	

				name:	'member',	

				mspId:	'ExporterOrgMSP'	

		}	

},	{	

		role:	{	

				name:	'member',	

				mspId:	'ExportingEntityOrgMSP'	

		}	

},	{	

		role:	{	

				name:	'member',	

				mspId:	'ImporterOrgMSP'	

		}	

},	{	

		role:	{	

				name:	'member',	

				mspId:	'CarrierOrgMSP'	

		}	

},	{	

		role:	{	

				name:	'member',	

				mspId:	'RegulatorOrgMSP'	

		}	

},	{	

		role:	{	

				name:	'admin',	

				mspId:	'TradeOrdererMSP'	

		}	

}];	

var	ALL_FIVE_ORG_MEMBERS	=	{	

		identities:	FIVE_ORG_MEMBERS_AND_ADMIN,	

		policy:	{	

				'5-of':	[{	'signed-by':	0	},	{	'signed-by':	1	},	{	'signed-by':	2	},	{	'signed-by':	

3	},	{	'signed-by':	4	}]	

		}	

};	

To	switch	the	endorsement	policy	in	our	middleware,	we	just	need	to	change	the
value	of	the	TRANSACTION_ENDORSEMENT_POLICY	variable	in	constants.js	from
ALL_FOUR_ORG_MEMBERS	to	ALL_FIVE_ORG_MEMBERS.

Upgrading	chaincode	and
endorsement	policy	on	the	trade
channel
Now	we	are	ready	to	carry	out	the	upgrade	process,	which	will	require	two	steps:

1.	 The	installation	of	the	new	version	of	chaincode	on	the	network	peers
2.	 The	upgrade	of	the	chaincode	and	endorsement	policy	on	the	channel

The	code	to	perform	these	steps	can	be	found	in	middleware/upgrade-chaincode.js	and
simply	involves	calling	functions	we	have	already	implemented	(see	Chapter
5,	Exposing	Network	Assets	and	Transactions).	The	following	code	snippet
shows	what	we	need	to	do	for	installation:

var	Constants	=	require('./constants.js');	

var	installCC	=	require('./install-chaincode.js');	

Constants.networkConfig	=	'./config_upgrade.json';	

Constants.TRANSACTION_ENDORSEMENT_POLICY	=	Constants.ALL_FIVE_ORG_MEMBERS;	

installCC.installChaincode(Constants.CHAINCODE_UPGRADE_PATH,	

Constants.CHAINCODE_UPGRADE_VERSION,	Constants);	

Note	in	the	preceding	code	that	the	5-organization	network	configuration	is	used
and	so	is	the	5-organization	endorsement	policy.	The	new	path	and	version	of	the
chaincode	are	set	in	constants.js	as	follows:

var	CHAINCODE_UPGRADE_PATH	=	'github.com/trade_workflow_v1';	

var	CHAINCODE_UPGRADE_VERSION	=	'v1';	

The	path	is	relative	to	the	chaincode/src	folder	in	the	repository,	as	the	GOPATH	is
temporarily	set	to	wherever	the	chaincode/	folder	has	been	copied	to	(see
constants.js	and	install-chaincode.js).	The	version	is	set	to	v1	as	opposed	to	the
initiation	version,	which	was	v0.

The	chaincode	version	ID	you	choose	MUST	be	unique	in	the	lifetime	of	the	chaincode;	that	is,	it
must	not	have	been	used	for	any	previous	version.

Triggering	the	upgrade	is	the	next	step,	which	is	almost	identical	to	the
instantiation	step	from	the	developer's	perspective:

var	instantiateCC	=	require('./instantiate-chaincode.js');	

instantiateCC.instantiateOrUpgradeChaincode(

		Constants.IMPORTER_ORG,	

		Constants.CHAINCODE_UPGRADE_PATH,	

		Constants.CHAINCODE_UPGRADE_VERSION,	

		'init',	

		[],	

		true,	

		Constants	

);	

As	we	can	see	preceding,	we	exercise	the	option	of	leaving	the	ledger	state	as	it
currently	stands	by	passing	an	empty	argument's	list.	In	the	function
instantiateOrUpgradeChaincode	in	instantiate-chaincode.js,	after	a	proposal	is	built,
channel.sendUpgradeProposal(request,	300000)	is	called	instead	of
channel.sendInstantiateProposal(request,	300000)	to	send	the	request	to	the	orderer.	As
in	the	case	of	instantiation,	we	register	event	listeners	to	tell	us	whether	the
request	succeeded.

To	push	the	chaincode	upgrade,	run:

node	upgrade-chaincode.js	

To	test	the	new	chaincode,	run:

node	five-org-trade-scenario.js	

This	will	run	a	sequence	of	trade	operations	(invocations	and	queries	on	the
chaincode)	involving	the	various	parties	from	the	request	of	a	trade	to	the	final
payment	for	delivery	of	a	shipment.

Platform	upgrades
Your	distributed	blockchain	application	must	anticipate	and	support	changes
made	to	the	platform	components.	Focusing	on	the	components	we	have	created
and	launched	in	our	sample	trade	network,	these	include	the	Fabric	peer,	orderer,
and	CA	(or	MSP.)	Just	like	the	application	chaincode	is	subject	to	change	to
account	for	bugs	and	new	requirements,	so	can	the	platform	change	over	time.
Fabric,	since	its	genesis	in	late	2015,	has	changed	many	times,	each	change
being	pushed	as	an	upgrade	with	a	new	version,	and	the	current	version	is	1.1.
Whenever	a	platform	component	gets	upgraded,	you	need	to	replace	those
components	in	your	running	system	without	disrupting	the	life	cycle	of	your
application.	In	this	section,	we	will	demonstrate	how	to	do	that.

You	can	run	your	network	components	in	different	configuration,	one	way	using
docker	containers,	which	is	the	approach	we	have	demonstrated	in	this	book.	To
upgrade	platform	components	running	in	docker	containers,	the	first	thing	you
need	to	do	is	generate	new	images	for	the	various	components.	This	can	be	done
either	by	downloading	the	relevant	images	from	Docker	Hub	or	downloading	the
source	and	building	the	images	natively	using	make	docker;	the	latter	approach
is	what	we	have	followed	in	this	book.	To	see	the	entire	list	of	Hyperledger
Fabric	images	downloaded	to	your	system,	you	can	run	something	as	follows:

docker	images	|	grep	hyperledger/fabric	

You	will	see	a	long	list	of	image	entries,	most	of	them	duplicated,	with	the	latest
tag	being	a	pointer	to	one	of	the	images	with	a	specific	tag	name.	Since	our
docker-compose	YAML	files	in	the	network	folder	(docker-compose-e2e.yaml,
base/docker-compose-base.yaml,	and	base/peer-base.yaml)	depend	only	on	the	images	for
fabric-peer,	fabric-orderer,	and	fabric-ca,	let	us	examine	just	those:

hyperledger/fabric-peer				latest				f9224936c8c3				2	weeks	ago				187MB	

hyperledger/fabric-peer				x86_64-1.1.1-snapshot-c257bb3				f9224936c8c3				2	weeks	ago				

187MB	

hyperledger/fabric-orderer				latest				5de53fad366a				2	weeks	ago				180MB	

hyperledger/fabric-orderer				x86_64-1.1.1-snapshot-c257bb3				5de53fad366a				2	weeks	

ago				180MB	

hyperledger/fabric-ca				latest				39fdba61db00				2	weeks	ago				299MB	

hyperledger/fabric-ca				x86_64-1.1.1-snapshot-e656889				39fdba61db00				2	weeks	ago				

299MB	

You	will	see	something	like	the	preceding	when	you	run	the	docker	images
command.	The	Docker	images	listed	here	were	built	natively	from	the	release-
1.1	branches	of	the	Fabric	and	Fabric	CA	source	code.	If	you	download	a
different	version	of	the	source	code	and	build	the	images	using	make	docker,	you
will	see	a	third	image	entry	for	each	of	the	preceding	components,	and	your
latest	image	tag	will	be	linked	to	the	one	that	you	just	created.

We	will	go	through	an	following	example	where	the	trade	network's	orderer	and
peers	are	upgraded.	We	will	leave	upgrading	fabric-ca	as	an	exercise	to	the	user.
To	do	this	in	a	running	application,	you	will	need	to	perform	the	following
sequence	of	steps:

1.	 Download	or	build	new	versions	of	platform	component	images
2.	 Stop	the	components
3.	 (Optional)	make	a	backup	of	your	ledger	contents	for	safety
4.	 Stop	the	running	chaincode	containers

	

5.	 Remove	the	chaincode	container	images	from	your	system
6.	 Ensure	that	the	image	tags	referenced	in	the	docker-compose	YAML	files

are	linked	to	the	new	versions	of	the	components
7.	 Start	the	components

You	can	also	choose	to	stop,	upgrade,	and	start	each	component	in	turn	rather
than	all	at	once.	You	will	need	to	stop	all	incoming	requests	to	the	system	while
this	upgrade	is	going	on,	which	should	be	a	simple	matter	of	shutting	down	your
application	web	servers.

There	is	sample	code	to	upgrade	our	trade	network	in	this	manner	in	the
upgradeNetwork	function	in	network/trade.sh	in	the	code	repository.	Here,	we
assume	that	the	user	will	either:

Pass	the	new	image	tag	(such	as	x86_64-1.1.1-snapshot-c257bb3	in	the	preceding
list)	as	a	command-line	parameter	using	the	-i	switch,	or
Link	the	latest	tag	to	the	new	image

Before	calling	the	function.	Now	we	must	stop	the	orderer	and	peers:

COMPOSE_FILE=docker-compose-e2e.yaml	

......	

COMPOSE_FILES="-f	$COMPOSE_FILE"	

......	

docker-compose	$COMPOSE_FILES	stop	orderer.trade.com	

......	

for	PEER	in	peer0.exporterorg.trade.com	peer0.importerorg.trade.com	

peer0.carrierorg.trade.com	peer0.regulatororg.trade.com;	do	

		

		docker-compose	$COMPOSE_FILES	stop	$PEER	

		

done	

As	we	can	see	preceding	code,	the	docker-compose	YAML	file	used	to	start	the
network	must	be	used	to	stop	individual	components	too.

The	preceding	example	assumes	that	only	the	first	4	organizations	are	part	of	the	network.

Once	the	containers	are	stopped,	we	can	choose	to	backup	the	ledger	data	as
follows:

LEDGERS_BACKUP=./ledgers-backup	

mkdir	-p	$LEDGERS_BACKUP	

......	

docker	cp	-a	orderer.trade.com:/var/hyperledger/production/orderer	

$LEDGERS_BACKUP/orderer.trade.com	

......	

for	PEER	in	peer0.exporterorg.trade.com	peer0.importerorg.trade.com	

peer0.carrierorg.trade.com	peer0.regulatororg.trade.com;	do	

		

		docker	cp	-a	$PEER:/var/hyperledger/production	$LEDGERS_BACKUP/$PEER/	

		

done	

The	contents	of	the	ledger	on	the	peers	as	well	as	the	orderer	are	now	backed	up
to	your	local	machine	in	the	ledgers-backup	folder.

Now	we	should	remove	all	the	chaincode	images	because	new	ones	need	to	be
created	by	the	new	fabric-peer	images,	and	the	presence	of	old	images	will	block
that	creation:

for	PEER	in	peer0.exporterorg.trade.com	peer0.importerorg.trade.com	

peer0.carrierorg.trade.com	peer0.regulatororg.trade.com;	do	

		

		CC_CONTAINERS=$(docker	ps	|	grep	dev-$PEER	|	awk	'{print	$1}')	

		if	[-n	"$CC_CONTAINERS"]	;	then	

				docker	rm	-f	$CC_CONTAINERS	

		fi	

		CC_IMAGES=$(docker	images	|	grep	dev-$PEER	|	awk	'{print	$1}')	

		if	[-n	"$CC_IMAGES"]	;	then	

				docker	rmi	-f	$CC_IMAGES	

		fi	

		

done	

Note	that	we	must	first	check	to	see	if	the	chaincode	containers	are	running,	and	stop	them	if
they	are,	otherwise	the	images	cannot	be	removed.

Now	we	can	restart	the	stopped	orderer	and	peer	containers.	When	running
docker-compose	up,	the	orderer	and	peer	containers	will	be	started	with	the	new
image:

docker-compose	$COMPOSE_FILES	up	--no-deps	orderer.trade.com	

......	

for	PEER	in	peer0.exporterorg.trade.com	peer0.importerorg.trade.com	

peer0.carrierorg.trade.com	peer0.regulatororg.trade.com;	do	

		

		docker-compose	$COMPOSE_FILES	up	--no-deps	$PEER	

		

done	

You	can	run	the	entire	upgrade	process	in	one	shot	by	running	the	script	in	either
of	the	following	ways:

./trade.sh	upgrade	[-i	<imagetag>]	

If	the	<imagetag>	is	not	specified,	it	will	default	to	latest,	as	mentioned	earlier.

You	can	now	continue	to	run	your	distributed	trade	application.	Note	that
platform	changes	may	also	be	accompanied	by	changes	in	chaincode	and	SDK
API,	which	may	necessitate	an	upgrade	to	your	chaincode	or	your	middleware	or
both.	As	we	have	demonstrated	examples	of	those	in	previous	sections,	the
reader	should	not	be	fully	equipped	to	upgrade	both	the	application	and	the
underlying	blockchain	platform	at	any	point	during	the	application's	and
network's	life	cycle.

System	monitoring	and	performance
You	have	now	built	your	application	and	instituted	various	processes	and
mechanisms	in	anticipation	of	changes	over	its	lifetime.	An	additional,	but	no
less	essential,	process	that	you	must	have	in	place	and	carry	out	from	time	to
time	is	monitoring	and	performance	measurement.	Any	production	application
you	build	for	real-world	users	and	institutions	must	meet	certain	performance
goals	to	be	useful	to	its	users,	and	by	implication,	the	application's	stakeholders.
Therefore,	understanding	how	your	application	performs	and	trying	to	improve
its	performance	is	a	key	maintenance	task;	any	dereliction	in	this	task	may	result
in	your	application	having	a	short	shelf	life.

The	art	(and	science)	of	system	performance	measurement	and	analytics	is	a
broad	and	extensive	set	of	topics,	and	it	is	not	our	intention	to	cover	these	topics
deeply	or	exhaustively	in	this	book.	To	obtain	such	a	coverage,	the	interested
reader	is	encouraged	to	read	other	canonical	texts	on	the	topic	(for	example,	https
://www.amazon.com/Systems-Performance-Enterprise-Brendan-Gregg/dp/0133390098.)	Instead,
we	will	offer	a	preview	of	what	performance	measurement	and	gaining	insight
into	a	blockchain	application	entails,	and	offer	some	hints	and	suggestions	about
the	tools	and	techniques	a	developer	or	system	administrator	can	utilize	for	these
purposes.

Broadly	speaking,	systems	maintenance	for	performance	involves	three,	roughly
sequential,	categories	of	tasks,	though	these	tasks	can	collectively	repeat	in
cycles	over	the	lifetime	of	a	system:

Observation	and	measurement
Evaluation	(or	analysis)	and	gaining	insight	(or	understanding)
Restructuring,	redesign,	or	reimplementation	for	improvement

In	our	discussion	in	this	section,	we	will	mainly	focus	on	some	aspects	of	the
following:

What	is	important	to	measure	in	a	Fabric	application
The	mechanisms	a	Fabric	application	developer	or	administrator	can	use	for
measurement

https://www.amazon.com/Systems-Performance-Enterprise-Brendan-Gregg/dp/0133390098

The	performance-inhibiting	aspects	of	Fabric	that	an	application	designers
and	developers	should	be	aware	of

Measurement	and	analytics
Before	discussing	Hyperledger	Fabric	in	particular,	let's	understand	what
measurement	and	analytics	means	for	a	distributed	system,	of	which	a
blockchain	application	is	an	example.	The	process	begins	with	a	comprehensive
understanding	of	the	architecture	of	the	system,	its	various	components,	and	the
degrees	and	natures	of	coupling	among	those	components.	The	next	step	is	to
institute	mechanisms	to	monitor	the	various	components	and	collect	data
attributes	that	have	any	bearing	on	performance,	either	continuously	or	at
periodic	intervals.	This	data	must	be	collected	and	communicated	to	a	module
that	can	then	analyze	it	to	generate	meaningful	representations	of	system
performance,	and	possibly	provide	more	insight	into	the	workings	of	the
applications	and	its	existing	inefficiencies.	The	analyzed	data	can	also	be	used	to
ensure	that	the	system	is	working	at	a	desired	level	of	performance,	and	to	detect
when	it	is	not,	something	which	is	of	high	(if	not	critical)	importance	to	user-
facing	systems.

Such	techniques	and	processes	are	well	known	in	the	world	of	distributed
systems	analytics,	and	also	in	mobile	analytics	(which	can	be	considered	to	be	a
special	case	of	the	former.)	Agents	can	be	configured	to	observe	or	monitor	a
system	component,	either	actively	or	passively:	in	the	former,	systems	can	be
instrumented	(for	example,	by	inserting	special	data	collection	code)	to	make
them	self-monitor	their	activities	and	gather	information,	whereas	in	the	latter,
data	collection	can	be	done	by	a	piece	of	software	that	is	external	to	the
component	being	monitored.	A	pipeline	exists	to	communicate	this	data	on	a
continuous	or	periodic	basis	to	a	central	repository,	where	the	data	can	be
accumulated	for	later	processing,	or	is	immediately	processed	and	consumed.
The	pipeline	may	modify	the	data	to	make	it	read	for	analytics	too.	In	data
analytics	parlance,	this	pipeline	is	typically	referred	to	as	extract-transform-
load	(ETL).	If	the	volume	and	frequency	of	data	generation	is	very	high,	and	if
the	number	of	data	sources	is	very	large,	such	analytics	is	also	referred	to	as	big
data	analytics.

ETL	processes	or	big	data	analytics	are	beyond	the	scope	of	this	chapter	and
book,	but	the	takeaway	for	a	serious	blockchain	developer	or	administrator	is

that	there	exist	frameworks	to	perform	such	analytics,	either	for	distributed
systems	configured	with	servers	and	databases	at	their	backends	(and	a	Fabric
blockchain	application	is	an	example	of	this)	such	as	Splunk	(https://www.splunk.co
m/en_us/solutions/solution-areas/business-analytics.html)	or	Apteligent	(http://www.aptel
igent.com/),	or	for	mobile	applications	such	as	Tealeaf	(https://www.ibm.com/in-en/mark
etplace/session-replay-and-interaction-analytics)	and	Google	Analytics	(https://develo
pers.google.com/analytics/solutions/mobile).	The	same	frameworks	can	be	used	or
adapted	to	monitor	and	analyze	blockchain	applications	too.

https://www.splunk.com/en_us/solutions/solution-areas/business-analytics.html
http://www.apteligent.com/
https://www.ibm.com/in-en/marketplace/session-replay-and-interaction-analytics
https://developers.google.com/analytics/solutions/mobile

What	should	we	measure	or
understand	in	a	Fabric	application
An	application	built	on	Hyperledger	Fabric	and	its	associated	tools	is,	in	effect,	a
distributed	transaction	processing	system.

Blockchain	applications	vis-à-vis
traditional	transaction	processing
applications
Think	about	what	a	traditional	transaction	processing	system	looks	like.	You	will
have	a	database	at	the	backend	to	store,	process,	and	serve	data;	this	database
may	be	centralized	or	distributed,	and	in	the	latter	case,	maintain	replicas	or
partitions.	In	front	of	the	database,	you	will	have	one	or	more	web	servers	or
application	servers	to	manage	and	run	your	application	logic;	and	further	in
front,	you	will	have	one	or	more	interfaces	for	interaction	with	users.

Similarly,	a	Fabric	blockchain	application	has	peers	maintaining	a	shared
replicated	ledger	as	the	equivalent	of	a	database.	The	smart	contract	code	is
analogous	to	stored	procedures	and	views	in	a	traditional	database	management
system.	The	middleware	and	application	server,	whose	architecture	and
workings	we	have	demonstrated	for	our	trade	application,	can	be	equivalents	of
or	even	hosted	by	traditional	application	servers.	Finally,	we	can	design	web
interfaces	for	user	interaction	just	as	we	would	for	a	traditional	transaction
processing	application.	Of	course,	we	used	curl	as	a	substitute	to	test	out	our
trade	use	case.

Metrics	for	performance	analysis
Therefore,	a	blockchain	application's	performance	is	affected	by	similar	factors
to	those	affecting	a	traditional	DBMS-based	transaction	processing	application.
First,	we	must	constantly	monitor	the	health	of	the	hardware	resources	that	are
hosting	the	application	components.	For	every	machine	that	is	running	a	peer	or
orderer	or	CA,	we	need	to	track	basic	health	indicators,	such	as	CPU	usage,
memory	usage,	disk	I/O	speeds,	network	bandwidth,	latency,	and	jitter,	and
available	storage	space	(this	is	not	meant	to	be	an	exhaustive	list).	These	factors,
especially	CPU	usage	for	processing-heavy	systems,	determine	whether	the
application	is	running	at	optimal	performance	levels.

As	we	have	seen	in	this	book,	a	Fabric	network	can	be	started	in	a	variety	of
configurations,	from	a	single	dedicated	machine	(physical	or	virtual)	for	each
peer	and	orderer	to	a	single-machine	setup	running	each	component	in	an
isolated	docker	container	(like	our	trade	network	setup	in	this	book).	In	the	latter
case,	you	will	need	to	monitor	the	health	of	not	only	the	machines	but	also	each
container.	Also	remember	that	each	Fabric	chaincode	instance	always	runs	in	a
docker	container	rather	than	on	a	dedicated	machine.	Plus,	when	it	comes	to
understanding	(or	profiling)	applications,	the	CPU,	memory,	and	I/O	usage	of
application	components	are	of	the	most	relevance.	We	will	look	at	some	tools	to
measure	container	and	application	performance	later	in	this	section.

Moving	from	the	external	factors	to	the	application	itself,	the	performance	of	a
Fabric	application	(just	like	any	other	transaction	processing	application)	is
defined	by	two	characteristic	metrics:

Throughput:	This	is	the	number	of	transactions	per	unit	time	that	your
system	can	yield.	As	Fabric	is	a	loosely	coupled	system	and	a	transaction
has	multiple	stages	(see	Chapter	5,	Exposing	Network	Assets	and
Transactions,	for	examples	in	our	trade	scenario),	we	can	measure
throughputs	for	the	different	stages.	But	the	overall	throughput,	from	the
time	a	client	constructs	a	transaction	proposal	for	endorsement	up	to	the
time	when	an	event	indicating	ledger	commitment	is	received,	provides	the
best	overall	picture	of	how	your	application	performs.	On	the	other	hand,	if
we	want	to	measure	just	the	orderer	throughput,	we	would	need	to	collect

statistics	just	for	the	part	where	the	client	sends	an	endorsed	transaction
envelope	to	the	orderer	and	gets	back	a	response.
Latency:	As	most	Fabric	applications	will	ultimately	be	user-facing,	it's	not
just	the	processing	capacity	or	volume	that	will	matter	in	a	real-world
scenario	but	also	how	long	each	transaction	takes.	As	in	the	case	of
throughput,	we	can	measure	different	latencies—chaincode	execution	and
endorsement,	ordering	and	block	creation,	transaction	validation	and	ledger
commitment,	and	even	event	publishing	and	subscription.	We	can	also
measure	inter-component	communication	latency	in	an	effort	to	understand
the	limitations	of	the	communication	infrastructure.

There	are	other	important	things	to	measure,	such	as	the	time	taken	to
synchronize	ledger	states	across	peers	(using	the	gossip	protocol),	but	from	a
transaction	processing	perspective,	the	preceding	two	metrics	are	of	prime
importance.	When	we	measure	these	factors,	we	get	an	understanding	of	how	the
overall	application	is	performing,	and	also	its	constituent	parts	such	as	the	ESCC
and	VSCC	in	a	peer	and	the	Kafka	service	in	an	orderer.

Measurement	and	data	collection	in	a
Fabric	application
Now	that	we	know	what	we	ought	to	measure,	let	us	look	at	some	examples	of
hands-on	measurement	and	data	collection.	We	will	use	our	single-VM	(Linux),
multiple-docker-container	trade	network	for	demonstrative	purposes,	and	let	the
reader	extrapolate	those	methods	(with	the	help	of	more	comprehensive	texts	on
measurement)	to	other	setups.

Collecting	health	and	capacity
information
A	standard	way	to	get	information	about	CPU,	memory,	and	other	activity	on
your	system	is	by	examining	info	in	/proc.	In	addition,	an	array	of	tools	is
available	in	Linux	to	obtain	specific	pieces	of	information.	The	sysstat	package
contains	many	of	them,	for	example,	iostat	to	collect	CPU	and	I/O	statistics,
pidstat	to	collect	health	statistics	for	each	process,	and	sar	and	sadc	to	collect
similar	statistics	as	cron	jobs.	Just	as	a	sample,	running	iostat	on	a	VM	running
the	entire	trade	network	and	the	chaincode	yields	the	following	CPU	info	and
I/O	statistics	for	the	two	virtual	hard	drives:

Linux	4.4.0-127-generic	(ubuntu-xenial)				05/28/2018				_x86_64_				(2	CPU)	

avg-cpu:		%user				%nice				%system				%iowait				%steal				%idle	

											0.31					0.01							0.26							0.11						0.00				99.32	

Device:												tps				kB_read/s				kB_wrtn/s				kB_read				kB_wrtn	

sda															1.11								16.71								11.00					688675					453396	

sdb															0.00									0.05									0.00							2014										0

The	vmstat	tool	similarly	presents	a	summary	of	the	virtual-machine-wide
information	as	follows:

procs	-----------memory----------	---swap--	-----io----	-system--	------cpu-----	

	r		b			swpd			free			buff		cache			si			so				bi				bo			in			cs	us	sy	id	wa	st	

	0		0						0	2811496	129856	779724				0				0					7					5		127		342		0		1	99		0		0	

For	continuous	per-process	statistics,	you	can	also	use	the	well-known	top
command,	and	also	dstat,	which	also	generates	output	in	CSV	format	for	easy
consumption.	If	you	want	to	connect	your	measurement	mechanisms	to	an	ETL
analytics	pipeline,	the	nmon	tool(http://nmon.sourceforge.net/pmwiki.php),	which	does
comprehensive	performance	data	collection	and	reporting	in	well-known
formats,	may	be	the	ideal	tool.

But	we	must	also	specifically	profile	the	containers	that	are	running	the
application	components.	The	perf	tool	is	very	handy	as	a	Linux	performance
counter	and	profiling	tool.	It	can	collect	profiles	on	a	per	thread,	per	process,	and
per	CPU	(or	processor)	basis.	Data	collection	is	done	by	using	the	perf	report

http://nmon.sourceforge.net/pmwiki.php

command	with	different	switches,	which	results	in	data	being	collected	and
stored	in	a	file	called	perf.data	in	the	folder	the	command	was	run	in.	This	data
can	them	be	analyzed	using	the	perf	report	command.	In	addition,	bindfs	(https://b
indfs.org/)	can	be	used	to	map	symbols	in	a	perf	report	to	processes	running
inside	docker	containers.	Lastly,	perf	stat	can	be	used	to	collect	system-wide
statistics.	The	perf	Wiki	(https://perf.wiki.kernel.org/index.php/Main_Page)	gives	more
information	about	how	to	use	this	tool.

https://bindfs.org/
https://perf.wiki.kernel.org/index.php/Main_Page

Profiling	containers	and	applications
Our	application	components	must	also	be	profiled	to	produce	instruction-level
information	and	call	stacks	for	us	to	analyze,	not	just	to	track	performance	but
also	to	debug	application	flaws.	The	strace	tool	can	be	used	to	record	system
calls	made	by	a	running	docker	container.	As	an	example,	get	the	process	ID	for
our	orderer	container	as	follows:

docker	inspect	--format	'{{	.State.Pid	}}'	orderer.trade.com

Recall	that	our	container	was	named	orderer.trade.com	in	our	docker-compose	YAML	file.	The
output	will	be	a	process	ID;	let's	call	it	<pid>.	Now	run	strace	on	that	process:

sudo	strace	-T	-tt	-p	<pid>

You	should	see	a	continuous	output,	something	like	the	following:

strace:	Process	5221	attached	

18:48:49.081842	restart_syscall(<...	resuming	interrupted	futex	...>)	=	-1	ETIMEDOUT	

(Connection	timed	out)	<0.089393>	

18:48:49.171665	futex(0x13cd758,	FUTEX_WAKE,	1)	=	1	<0.000479>	

18:48:49.172253	futex(0x13cd690,	FUTEX_WAKE,	1)	=	1	<0.000556>	

18:48:49.174052	futex(0xc420184f10,	FUTEX_WAKE,	1)	=	1	<0.000035>	

18:48:49.174698	futex(0xc42002c810,	FUTEX_WAKE,	1)	=	1	<0.000053>	

18:48:49.175556	futex(0x13cd280,	FUTEX_WAIT,	0,	{1,	996752461})	=	-1	ETIMEDOUT	

(Connection	timed	out)	<1.999684>	

To	analyze	the	output,	read	the	canonical	strace	documentation.	Note	that	this
tool	is	available	only	on	Linux	systems.	Also,	in	your	docker-compose	YAML
file,	you	can	configure	a	container	to	run	strace	internally.	As	an	example,	take
the	container	definition	of	peer0.exporterorg.trade.com	in	network/base/docker-compose-
base.yaml.	You	can	augment	it	to	enable	strace	as	follows	(added	configuration
italicized):

peer0.exporterorg.trade.com:	

		container_name:	peer0.exporterorg.trade.com	

		cap_add:	

			-	SYS_PTRACE	

		security_opt:	

				-	seccomp:unconfined	

Finally,	for	information	more	specific	to	the	Fabric	platform	and	the	application
you	have	developed	on	it,	there	is	Go	profiling	to	turn	to.	The	Fabric
components	(peers,	orderers,	and	CAs)	are	written	in	Golang,	as	is	the
chaincode,	and	finding	out	which	parts	of	the	program	use	more	time	and

resources	are	of	critical	importance	in	improving	the	quality	of	your	application.
For	such	profiling,	we	can	use	pprof	(https://golang.org/pkg/net/http/pprof/),
Golang's	built-in	profiler	(https://blog.golang.org/profiling-go-programs).	(Please
ensure	you	have	go	installed	on	the	system	in	which	you	intend	to	run	your
profiler.)	To	capture	an	application	profile	consisting	of	call	graphs	and	run
frequency	(equivalent	to	CPU	usage)	of	various	functions	in	the	graph,	pprof
requires	a	Go	application	to	run	an	HTTP	server	as	follows:

import	"net/http"	

http.ListenAndServe("localhost:6060",	nil)

To	get	a	profile,	we	can	use	go	tool	to	hit	this	server	and	fetch	the	data.	As	an
example,	if	your	application	is	running	a	server	on	port	6060,	you	can	get	a	heap
profile	by	running:

go	tool	pprof	http://localhost:6060/debug/pprof/heap	

You	can	replace	localhost	with	an	appropriate	host	name	or	IP	address	in	the
preceding	command.	To	get	a	30-second	CPU	profile	instead,	run:

go	tool	pprof	http://localhost:6060/debug/pprof/profile	

Hyperledger	Fabric	provides	built-in	support	for	such	profiling	(https://github.com
/hyperledger-archives/fabric/wiki/Profiling-the-Hyperledger-Fabric),	at	least	on	the
Fabric	peer.	To	enable	profiling	(or	running	the	HTTP	server),	we	need	to
configure	the	peer	(or	in	our	case,	the	docker	container	running	the	peer)	suitably.
Recall	that	the	core	configuration	for	each	peer	in	our	sample	trade	network	is
defined	in	network/base/peer-base.yaml.	Notice	the	following	lines:

services:	

		peer-base:	

				image:	hyperledger/fabric-peer:$IMAGE_TAG	

				environment:	

						

						-	CORE_PEER_PROFILE_ENABLED=true	

						

Also	recall	that	our	peer's	port	mappings	between	the	container	and	the	host	are
defined	in	network/base/docker-compose-base.yaml.	Examples	of	exporter	and	importer
org	peers	are	given	as	follows:

peer0.exporterorg.trade.com:	

		

		ports:	

				

https://golang.org/pkg/net/http/pprof/
https://blog.golang.org/profiling-go-programs
https://github.com/hyperledger-archives/fabric/wiki/Profiling-the-Hyperledger-Fabric

				-	7055:6060	

				

peer0.importerorg.trade.com:	

		

		ports:	

				

				-	8055:6060	

			

Though	within	their	containers,	the	profile	server	runs	on	port	6060,	on	the	host
machine,	pprof	will	hit	port	7055	to	capture	the	exporter	organization	peer's	profile
and	port	8055	to	capture	the	importer	organization	peer's	profile.

As	an	example,	let	us	capture	a	30-second	CPU	profile	of	the	exporter
organization's	peer.	We	can	start	up	the	trade	network	and	run	the	channel
creation	and	chaincode	installation	steps	using	middleware/createTradeApp.js.	In	a
different	terminal	window,	we	can	run:

go	tool	pprof	http://localhost:7055/debug/pprof/profile	

This	will	eventually	generate	a	file	in	~/pprof,	and	spew	something	like	the
following	on	your	console:

Fetching	profile	over	HTTP	from	http://localhost:7055/debug/pprof/profile	

Saved	profile	in	/home/vagrant/pprof/pprof.peer.samples.cpu.006.pb.gz	

File:	peer	

Build	ID:	66c7be6d1f71cb816faabc48e4a498bf8052ba1b	

Type:	cpu	

Time:	May	29,	2018	at	5:09am	(UTC)	

Duration:	30s,	Total	samples	=	530ms	(1.77%)	

Entering	interactive	mode	(type	"help"	for	commands,	"o"	for	options)	

(pprof)	

Lastly,	the	tool	leaves	a	pprof	shell	to	run	a	variety	of	profiling	commands	from,
to	analyze	the	obtained	dump.	For	example,	to	get	the	top	five	most	active
functions	or	goroutines:

(pprof)	top5	

Showing	nodes	accounting	for	340ms,	64.15%	of	530ms	total	

Showing	top	5	nodes	out	of	200	

						flat		flat%			sum%								cum			cum%	

					230ms	43.40%	43.40%						230ms	43.40%		runtime.futex	

/opt/go/src/runtime/sys_linux_amd64.s	

						30ms		5.66%	49.06%							30ms		5.66%		crypto/sha256.block	

/opt/go/src/crypto/sha256/sha256block_amd64.s	

						30ms		5.66%	54.72%							30ms		5.66%		runtime.memmove	

/opt/go/src/runtime/memmove_amd64.s	

						30ms		5.66%	60.38%							30ms		5.66%		runtime.usleep	

/opt/go/src/runtime/sys_linux_amd64.s	

						20ms		3.77%	64.15%						110ms	20.75%		runtime.findrunnable	

/opt/go/src/runtime/proc.go

The	tree	command	displays	the	entire	call	graph	in	textual	form,	a	section	of
which	looks	something	like	this:

(pprof)	tree	

Showing	nodes	accounting	for	530ms,	100%	of	530ms	total	

Showing	top	80	nodes	out	of	200	

--+-------------	

						flat		flat%			sum%								cum			cum%			calls	calls%	+	context	

--+-------------	

																																														70ms	30.43%	|			runtime.stopm	

/opt/go/src/runtime/proc.go	

																																														50ms	21.74%	|			

runtime.notetsleep_internal	/opt/go/src/runtime/lock_futex.go	

																																														40ms	17.39%	|			runtime.ready	

/opt/go/src/runtime/proc.go	

					230ms	43.40%	43.40%						230ms	43.40%																|	runtime.futex	

/opt/go/src/runtime/sys_linux_amd64.s	

--+-------------	

																																														30ms			100%	|			crypto/sha256.

(*digest).Write	/opt/go/src/crypto/sha256/sha256.go	

						30ms		5.66%	49.06%							30ms		5.66%																|	crypto/sha256.block	

/opt/go/src/crypto/sha256/sha256block_amd64.s	

--+-------------	

You	can	also	view	the	graph	pictorially,	either	on	a	web	page	or	by	generating	a
file:

(pprof)	png	

Generating	report	in	profile001.png

The	following	example	here	shows	the	call	graph	generated	as	a	PNG	image:

Figure	9.4:	A	section	a	call	graph	representing	the	functions	executed	in	a	peer	node	within	a	30-second	period

This	is	a	section	of	the	call	graph	image,	which	each	box	representing	a	function
and	the	box's	size	indicating	the	frequency	of	that	function	(that	is,	the	number
of	profile	samples	in	which	that	function	was	running).	Directed	graph	edges
indicate	calls	made	from	one	function	to	another,	with	the	edges	indicating	the
time	spent	in	making	such	calls.

For	more	pprof	options	and	analytical	tools,	the	reader	is	encouraged	to	read	the
documentation.

Measuring	application	performance
Measuring	throughput	and	latency	of	your	application	is	somewhat	less	arcane
than	many	of	the	tools	described	previously;	it	will	involve	instrumenting	your
code	to	collect	and	record	timing	information.	In	your	code,	you	will	need	to
either	add	logging	(or	communication,	for	remote	reporting)	instructions	to
record	when	a	particular	operation	is	being	performed,	or	add	appropriate	hooks
that	can	enable	or	disable	data	collection	as	per	requirement.

Measuring	latency	is	fairly	straightforward;	you	can	record	the	times	of	various
operations	such	as	client	proposal	submission,	return	of	endorsement,	orderer's
acknowledgment	of	a	request,	ledger	commitment	time,	and	the	time	when	the
event	was	received.	Collecting	data	for	a	large	number	of	transactions	will
enable	you	to	get	overall	transaction	latency	as	well	as	the	latency	incurred	in
individual	operations.

To	get	throughput	information,	you	will	need	to	generate	transaction	loads	of
different	volumes	and	different	frequencies.	Then	you	can	increase	the	load	on
your	application	up	to	the	point	when	the	observed	frequency	of	transaction
commitment	(or	receiving	of	an	event)	decreases	below	the	transaction	load
generation	frequency.	Apart	from	that,	you	will	need	to	instrument	the	code	the
way	you	did	to	measure	transaction	latencies.	You	can	change	different
application	parameters	and	characteristics	and	run	such	throughput
measurements	to	determine	application	and	resource	characteristics	for	optimal
performance.

Given	all	the	information	we	can	collect	using	the	tools	described	in	this	section,
an	application	or	network	designer	can	conduct	advanced	analytics	to	determine
what	parts	of	the	system	(for	example,	from	a	pprof	call	graph)	are	performing
well,	and	what	parts	are	bottlenecks.	One	can	then	try	to	remedy	performance
limitations	by	adding	more	resources	to	"bottlenecked"	components	or
reimplement	the	system	to	make	those	components	more	efficient.	Load
balancing	across	different	redundant	resources	is	another	widely	used	technique
to	maintain	high	performance	levels.	Bottleneck	detection	and	analysis	is	a	very
important	topic	in	its	own	right,	and	the	reader	is	encouraged	to	study	texts	and

academic	papers	to	gain	a	better	understanding.

Fabric	engineering	guidelines	for
performance
We	will	now	move	from	the	general	to	the	specific.	In	this	section,	we	will	offer
a	commentary	on	Hyperledger	Fabric	performance,	discuss	the	salient
characteristics	of	the	platform	that	impact	performance,	and	lay	out	guidelines
for	developers	to	extract	the	best	performance	from	their	applications.

Platform	performance	characteristics
The	Fabric	architecture	and	transaction	pipeline	should	be	very	familiar	to	the
readers	of	this	book	by	now.	It	is	a	complex	distributed	system	and	its
performance	depends	on	many	factors,	ranging	from	the	architecture	of	the
application	interacting	with	Fabric	to	consensus	implementation,	transaction
size,	block	size,	Fabric	network	size,	as	well	as	capability	of	the	underlying
hardware	and	physical	network	medium.

At	the	time	of	writing	this	book,	performance	measurements	reveal	that	Fabric
can	yield	a	throughput	of	several	thousand	transactions	per	second	(https://arxiv.
org/abs/1801.10228.).	The	caveat	our	readers	need	to	keep	in	mind	is	that	these
measurements	were	carried	out	using	chaincodes	that	performed	very	simple
operations,	and	using	application	and	network	configurations	that	may	not
represent	a	typical	production	blockchain	network.	Fabric	performance	is	bound
to	the	specific	use	case	and	the	underlying	hardware.	For	example,	performance
on	IBM	Z	systems	exceeds	other	platforms	due	to	optimized	Go	compilers
leveraging	hardware	acceleration	capabilities	such	as	for	cryptographic
algorithms	and	others.	Good	performance	depends	on	the	availability	of
sufficient	resources	and	proper	configuration;	we	will	discuss	configuration	at
length	later	in	this	section.

https://arxiv.org/abs/1801.10228

System	bottlenecks
A	simple	inspection	of	the	Fabric	architecture	and	transaction	stages	will	reveal
the	possible	bottleneck	components.	The	ordering	service	is	a	prime	and	obvious
example.	Every	transaction	MUST	pass	through	this	service	and	get	included	in
a	block	to	have	a	chance	at	ledger	commitment.	But	keep	in	mind	that	there	is
still	no	guarantee	that	a	transaction	will	not	be	rejected	at	commitment
time.	Therefore,	the	performance	of	the	ordering	service,	in	a	way,	sets	the
baseline	for	your	application's	performance.	Clearly,	increasing	orderer
resources,	either	by	adding	more	nodes	or	adding	capacity	to	each	individual
node,	may	result	in	better	performance.	Other	ordering	mechanisms	may	also	be
used	in	place	of	the	current	Fabric	default,	which	is	Kafka.	As	the	Fabric
platform	evolves,	expect	to	see	better	and	faster	ordering	algorithms.

Another	system	bottleneck	lies	at	the	ledger	commitment	stage	when	the
transactions	have	to	be	evaluated	both	for	authenticity	of	endorsements	and	to
enforce	database	(ledger)	consistency	by	managing	read	and	write	conflicts.
Cryptographic	operations	are	heavy	by	nature,	and	recent	changes	to	Fabric	(in
v1.1,	for	example)	have	made	signature	validations	more	efficient.	As	a
developer	or	a	network	engineer,	you	can	streamline	performance	by	minimizing
the	possibility	of	transaction	failures	because	of	invalid	signatures	or	inter-
transaction	conflict.	For	the	former,	better	validation	at	endorsement	stage	and
during	the	request	generation	for	the	orderer	should	decrease	the	chances	of
failure.

To	reduce	conflicts,	one	needs	to	experiment	with	varying	block	sizes
(remember	that	checks	are	made	for	conflicts	among	transactions	within	a
block).	Though	larger	blocks	may	result	in	higher	throughput,	conflicts	may
have	the	opposite	effect.	You	can	also	design	your	chaincode	in	ways	that	will
minimize	the	possibility	of	conflicts	among	different	invoke	transactions.	For
explanation	of	how	Fabric	detects	and	handles	conflicts	in	blocks	see	Chapter	4,
Designing	a	Data	and	Transaction	Model	with	Golang,	in	the	Multiversion
concurrency	control	section.

Configuration	and	tuning
Continuing	from	our	previous	discussion,	you	can	configure	various	parameters
to	optimize	your	application’s	performance.	Many	of	these	parameters	are
outcomes	of	the	system	requirements	such	as	the	network	size.		But	a	few
parameters	in	your	core	Fabric	configuration	(see	Chapter	3,	Setting	the	Stage	with
a	Business	Scenario,	in	Network	Components'	Configuration	Files	section)	can
be	adjusted	to	maximize	performance.	One	of	them	is	the	block	size.	It’s
possible	to	determine	the	precise	block	size	(both	in	bytes	and	in	the	number	of
transactions)	that	you	should	set	for	your	application	through	experimentation
(or	adjustment	of	the	parameter	until	you	achieve	optimal	throughput	and
latency).	For	example,	measurements	on	a	crypto-currency	application	called
Fabcoin	revealed	an	optimal	block	size	of	2	MB	(https://arxiv.org/abs/1801.10228).
But	the	reader	must	keep	in	mind	the	trade-off	discussed	in	the	previous	section
whereby	a	larger	number	of	transactions	in	a	block	may	also	result	in	higher
conflict	rates	and	transaction	rejections.

Your	selection	of	transaction	endorsement	policy	will	also	have	a	significant
performance	impact.	The	more	the	signatures	that	need	to	be	collected	from
endorsing	peers,	the	more	time	it	will	take	to	validate	the	signatures	at
commitment	time.	Also,	the	more	complex	your	policy	(namely	the	more	clauses
it	has),	the	slower	the	validation	will	be.	Now	there	is	a	trade-off	to	be	made
here.	More	endorsers	and	a	more	complex	policy	will	usually	provide	higher
assurance	(reliability	as	well	as	trust),	but	it	will	come	at	a	cost	to	performance
(both	throughput	and	latency).	Therefore,	a	blockchain	application	administrator
must	determine	what	service	level	as	well	as	trust	level	are	required	and	tweak
the	parameters	accordingly.

There	are	various	other	factors	that	could	affect	the	performance	of	a	Fabric
application:	this	includes	overhead	due	to	the	gossip	protocol	among	the	peers	to
sync	the	ledger	contents,	the	number	of	channels	you	use	in	your	application,
and	the	transaction	generation	rates.	At	the	hardware	level,	performance	is
determined	by	the	number	and	performance	of	CPUs	available	to	the
components.	Generally,	it	can	be	stated	that	increasing	the	number	of	CPUs
yields	an	increase	in	the	performance	of	the	components	and	of	the	overall

https://arxiv.org/abs/1801.10228

blockchain	network.	If	you	are	interested	in	more	details,	a	good	paper	to	read
on	this	topic	is	"Hyperledger	Fabric:	A	Distributed	Operating	System	for	Permissioned	Blockchains,
EuroSys	'18	(https://dl.acm.org/citation.cfm?id=3190538)",	also	available	at	https://arxiv.org/pdf/1801.10
228v1.pdf.

https://dl.acm.org/citation.cfm?id=3190538
https://arxiv.org/pdf/1801.10228v1.pdf

Ledger	data	availability	and	caching
You	can	further	improve	the	performance	of	your	distributed	Fabric	application
by	optimizing	the	availability	of	data	(that	is,	retrieval	time)	stored	in	the	ledger.
There	are	several	strategies	to	do	this,	and	we	will	outline	two	of	them	here.

Redundant	committing	peer
To	increase	data	availability	to	client	applications,	an	additional	committing	peer
(or	multiple	peers)	may	be	deployed	topologically	closer	to	the	client	application
or	to	middleware	components	accessing	the	data.	The	committing	peer	receives
newly	created	blocks	and	maintains	up	to	date	ledger.	It	does	not	participate	in
the	endorsement	process	and	thus	does	not	receive	transaction	proposal	requests
from	clients.	The	performance	of	the	peer	is	thus	fully	dedicated	to	maintaining
ledger	and	responding	to	requests	for	data.	An	important	considerations	in	terms
of	network	performance	and	system	security	configuration	is	to	choose	and	set
up	the	location	such	that	the	committing	peer	can	unobstructed	connect	to	the
channel	and	the	network	throughput	allows	to	receive	newly	created	blocks	with
a	low	delay.

Data	caching
Data	retrieved	from	a	peer	may	be	stored	in	an	application	cache	so	that	future
requests	for	that	data	can	be	served	faster.	To	maintain	the	data	in	the	cache	up	to
date,	the	application	must	monitor	changes	in	the	underlying	ledger	and	update
the	cached	data	with	new	state	modifications.	As	discussed	earlier,	the	peer	emits
event	notifications	about	newly	committed	transactions	into	the	ledger.	The
notification	can	be	intercepted	by	the	client	and	by	inspecting	the	content	of	the
transaction,	the	client	can	determine	whether	the	cache	should	be	updated	with
new	values.

Fabric	performance	measurement
and	benchmarking
We	hope	this	section	of	the	book	has	given	the	reader	an	understanding	of	why
performance	measurement	and	analysis	are	important,	and	some	clues	about	how
to	make	his/her	application	provide	adequate	level	of	service.	We	will	conclude
by	pointing	the	reader	to	tools	that	currently	exist	within	the	Hyperledger
framework	to	measure	performance	(mainly	throughout,	latency,	and	resource
utilization)	using	sample	benchmark	applications.

For	an	in-depth	and	comprehensive	performance	measurement	tools	suite,	you
should	look	at	fabric-test	(https://github.com/hyperledger/fabric-test/.)	In	particular,
PTE	(https://github.com/hyperledger/fabric-test/tree/master/tools/PTE)	is	a	flexible	tool
that	can	be	used	to	drive	parameterized	transaction	load	using	sample
chaincodes.

Hyperledger	Cello	(https://www.hyperledger.org/projects/cello)	is	not	a	performance
measurement	tool	but	rather	a	blockchain	provisioning	and	management	system
that	enables	the	launching	of	networks	on	different	platforms	(virtual	machines,
clouds,	and	container	clusters).	It	can	be	used	as	an	aid	to	launch,	test,	and
measure	sample	networks	before	attempting	a	production	deployment.

Hyperledger	Caliper	(https://www.hyperledger.org/projects/caliper)	is	another	project
that	is	currently	developing	a	benchmarking	framework	to	allow	users	to
measure	the	performance	of	a	specific	blockchain	implementation	with	a	set	of
predefined	use	cases,	and	produce	reports.	The	reader	should	keep	in	mind	that
these	projects	are	works-in-progress,	and	should	keep	an	eye	on	further
developments	driven	by	research	in	the	areas	of	blockchain	performance
benchmarking.

https://github.com/hyperledger/fabric-test/
https://github.com/hyperledger/fabric-test/tree/master/tools/PTE
https://www.hyperledger.org/projects/cello
https://www.hyperledger.org/projects/caliper

Summary
Maintaining	and	augmenting	a	blockchain	application	is	possibly	even	more
challenging	than	creating	and	bootstrapping	it,	as	one	needs	to	be	skilled	in
monitoring	and	analytics	and	also	in	assessing	the	impact	of	changes.

In	this	chapter,	we	described	the	various	ways	in	which	a	Hyperledger	Fabric
application	can	and	will	inevitably	change	over	its	lifetime.	We	described	in
detail,	using	our	canonical	trade	application	as	an	example,	how	organizations
and	peers	can	be	added	to	a	running	network,	how	channel	configurations	can	be
augmented,	how	platforms	can	be	upgraded,	and	how	the	smart	contract
(chaincode)	itself	can	be	modified	without	adversely	affecting	the	application
state.

In	a	later	part	of	the	chapter,	we	gave	an	overview	of	the	tools	a	developer	of
system	administrator	can	use	to	measure,	analyze,	and	improve	the	performance
of	a	Fabric	blockchain	application.	We	also	provided	guidelines	to	engineering
the	system	for	better	performance.

With	further	research	and	development,	the	Hyperledger	suite	will	no	doubt	be
augmented	with	more	and	better	mechanisms	for	system	changes	and
monitoring.	This	chapter	should	serve	as	a	handy	guide	for	the	typical	Fabric
developer	or	administrator	to	maintaining	their	production	application.

Governance,	Necessary	Evil	of
Regulated	Industries
For	those	of	you	who	have	experienced	projects	without	clear	decision-making
processes,	you'll	have	felt	the	pain	of	the	churns	as	decisions	are	constantly
questioned	and	modified	due	to	the	influence	of	various	stakeholders.	Politics
gets	in	the	way	and	the	objectives	of	the	project	end	up	getting	challenged,
budgets	get	cut,	and	the	long-term	vision	is	missing	or	confusing.

While	this	is	something	you	can	expect	from	a	traditional	IT	project,	a
blockchain	project	has	the	characteristic	of	having	a	good	deal	more
stakeholders.	A	typical	business	network	will	be	composed	of	organizations	that
are	sometimes	competing	and	sometimes	cooperating.	In	this	context,	it	is	not
hard	to	see	that	there	are	high	risks	of	finding	conflicting	perspectives,	points	of
view,	and	interests.

Whether	you	are	a	developer	or	a	CIO,	understanding	what	you	can	expect	from
such	projects	and	how	a	governance	model	can	help	alleviate	some	of	the	issues
may	be	helpful	in	preparing	you	for	what	is	to	come.

This	chapter	will	present	a	few	of	the	patterns	we	have	seen	in	various	industries
and	explore	how	these	blockchain	business	networks	can	be	formed,	as	well	as
how	the	underlying	governance	model	functions.

This	chapter	will	provide	a	view	on	the	following	topics:

What	is	governance?
Various	business	models
Role	of	governance	in	a	business	network
Typical	governance	structure	and	phases
Roles	and	processes	to	consider
Impact	of	governance	on	the	IT	solution

Decentralization	and	governance
Some	of	you	may	be	wondering	why	we	are	covering	governance	in	a
blockchain	book.	After	all,	aren't	blockchain	networks	supposed	to	be
decentralized,	and	thus	guarded	against	the	control	of	a	single	entity?	While	this
is	true	from	a	technology	perspective,	the	reality	is	that	we	are	human,	and	for	an
enterprise-grade	blockchain	network	to	succeed,	there	are	a	lot	of	decisions	that
need	to	be	made	throughout	the	life	cycle	of	the	network.

Even	bitcoin,	the	decentralized,	anonymous,	permissionless	network,	must	deal
with	important	and	hard	decisions.	A	case	in	point	is	the	controversy	around
bitcoin	block	size.	In	the	early	days	of	bitcoin,	a	limit	of	1	MB	was	set	on	the
block	size.	As	the	network	scaled	up,	this	limit	became	problematic.	Numerous
proposals	were	issued,	but	the	need	for	a	consensus	across	the	entirety	of	bitcoin
nodes	made	the	change	difficult	to	agree	on.	This	debate	started	in	2015,	but	the
community	had	to	wait	until	February	2018	for	a	partial	solution,	SegWit,	to	be
partially	adopted.	We	say	partial	because	SegWit,	which	stands	for	segregated
witness,	only	alleviates	the	problem	by	separating	the	signatures	from	the
transaction	payload,	thereby	allowing	the	inclusion	of	more	transactions	within	a
block—a	lot	of	discussion	and	exchanges	to	reach	a	partial	answer.

Furthermore,	consider	that	blockchain	business	networks	are	meant	to	create
trust	in	an	environment	where	not	all	participants	fully	trust	each	other.	How	will
they	reach	a	consensus	on	how	to	manage	a	network?

Knowing	there	will	be	conflicts	and	disparate	views,	how	can	we	address	this?
Well,	we	need	a	process	that	will	involve	the	important	decision	makers	of	each
key	organization.	There	needs	to	be	a	basic	agreement	on	a	process	that
participants	agree	to	follow	and	respect	the	outcome	of.	We	need	a	way	to
govern	the	network—we	need	governance.

So,	is	governance	about	decision	making?	Not	really.	Governance	is	about
providing	a	framework	that	guides	the	decision-making	process.	It	does	so	by
providing	a	clear	delineation	of	roles	and	responsibilities,	and	ensures	that	there
are	agreed	processes	to	reach	and	communicate	decisions.

We've	been	talking	about	decisions	in	a	generic	fashion,	but	what	types	of
decision	need	to	be	managed	through	the	governance	process?	We	will	properly
answer	this	question	in	the	Roles	and	processes	section,	but	for	now,	suffice	it	to
say	that	everything	that	deals	with	funding,	the	functionality	roadmap,	system
upgrades,	and	network	expansion	are	certainly	key	topics	that	should	be	covered
by	a	governance	process.

Business	and	IT	governance	are	topics	that	have	been	covered	at	length.	As	such,
you	will	find	many	IT	governance	standards	that	aim	at	defining	a	proven
structure	to	guide	practices	within	the	IT	industry.	A	few	examples	of	such
standards	are:

Information	Technology	Infrastructure	Library	(ITIL):	ITIL	is
primarily	focused	on	how	IT	renders	services	to	the	business	and	aims	at
defining	a	process	model	that	supports	IT	service	management,	essentially
expressing	an	IT	service	as	a	function	of	the	business	benefits	they	bring
instead	of	the	underlying	technical	details.
Control	Objectives	for	Information	and	Related	Technologies
(COBIT):	This	standard	is	broken	down	into	two	parts:	Governance	and
Management.	The	governance	portion	of	COBIT	focusses	on	ensuring	that
the	enterprise	objectives	are	met	through	a	series	of	control	objectives
around	the	evaluation,	direction,	and	monitoring	processes.

In	any	case,	standard	approaches	always	need	to	be	adjusted	and	adapted	to	the
business	model	and	context.

Exploring	the	business	models
A	business	model	focusses	on	creating	a	structure	that	describes	the	flow	of	how
an	organization	creates	and	captures	value	in	a	market.

In	the	context	of	a	business	network,	it	is	interesting	to	look	at	the	value	chain
and	understand	where	that	value	originates.	What	makes	a	blockchain	network
so	appealing	from	a	financial	perspective?	Well,	as	we	have	seen	in	Chapter	1,
Blockchain—Enterprise	and	Industry	Perspective,	blockchain	technologies	offer
an	opportunity	to	solve	the	issues	of	time	and	trust,	thereby	reducing
inefficiencies	and	operational	costs.

Blockchain	benefits
What	types	of	benefit	can	come	from	addressing	the	issues	of	time	and	trust?
Let's	look	at	a	few	examples	of	where	and	how	these	benefits	can	be
implemented	in	the	following	sections.

Supply	chain	management
The	supply	chain	is	made	up	of	many	actors,	from	the	producer	to	the	logistic
service	providers,	port	authority,	manufacturer,	and	ultimately,	the	consumer.
The	industry	must	deal	with	a	variety	of	regulations,	and	while	there	are	many
data	exchanges	in	place	between	different	organizations,	getting	a	single	version
of	the	truth	is	not	possible.

The	lack	of	trust	in	a	supply	chain	stems	from	the	fact	that	many	of	the
organizations	involved	fear	that	data	might	leak	to	competitors.	This	in	turn
translates	to	the	following	issues:

Visibility:	Where	is	my	order?	Where	is	my	container?	Without
transparency,	the	manufacturer's	forecasting	is	impacted,	and	can	lead	to
production	delays.
Administrative	overhead:	Data	needs	to	be	keyed	in	multiple	times,
requiring	human	effort	and	the	need	for	a	reconciliation	process	to	detect
errors.
Disputes:	The	lack	of	access	to	a	common	source	of	information	leads	to
discrepancies	in	the	perception	of	the	different	actors,	turning	these
discrepancies	into	disputes.
Investigation:	As	a	consequence	of	the	dispute,	efforts	have	to	be	made	by
multiple	parties	to	gather	facts	and	resolve	the	issue.

In	this	context,	a	decentralized,	permissioned	ledger	means	that	every	order	and
every	shipment	could	be	tracked	in	real	time,	all	while	preventing	competitors
from	accessing	sensitive	information.	This	model	would	contribute	to
eliminating	duplicate	data	entries,	reducing	human	error,	and	expediting
investigation,	as	the	provenance	of	each	transaction	could	easily	be
demonstrated.

Given	the	worldwide	economy,	it	is	not	hard	to	imagine	the	potential	savings.
Imagining	a	world	where	there	is	a	single	source	of	truth	that	is	managed
through	a	permissioned	ledger,	and	where	all	relevant	actors	can	get	access	to	the
information,	we	can	see	the	immediate	benefits	that	this	would	bring	throughout
the	supply	chain.

Healthcare
The	healthcare	industry	has	a	wide	range	of	use	cases	that	can	be	explored,
including	the	pharmaceutical	supply	chain,	clinical	trials,	and	electronic	health
records.	We	will	focus	on	this	last	use	case,	as	it	is	closer	to	our	heart	(literally).

The	promise	of	electronic	health	records	has	always	been	appealing,	and	the
benefits	at	first	glance	seem	to	be	numerous:

Complete	view	of	the	patient's	history:	By	eliminating	the	inherent
duplication	of	paper-based	records,	the	patient	should	get	more	accurate
diagnostics	and	receive	more	coherent	long-term	care,	all	in	a	timely
fashion
Reduction	in	duplication:	Whether	from	duplicate	tests	being	requested	by
different	doctors	or	the	fact	that	every	clinic	and	hospital	has	to	maintain	its
records,	there	is	a	potential	waste	of	resources	in	the	healthcare	system
Prevention	of	fraudulent	actions:	Whether	it	is	double	accounting	by
rogue	clinics	or	the	claiming	of	false	prescriptions,	there	are	many	scenarios
where	the	duplication	of	records	creates	the	opportunity	for	abuse

While	the	benefits	may	seem	obvious,	the	lessons	from	existing	electronic	health
record	projects	would	seem	to	hint	at	the	fact	that	they	are	expensive	and	may
not	immediately	deliver	the	expected	benefits.	Some	research	have	found	that:

Digitally	documenting	patient/doctor	session	created	additional	work	for
the	doctor
Electronic	health	record	systems	were	creating	an	increase	in	IT	spending
Additional	effort	had	to	be	spent	on	change	management	and	training

Since	then,	recent	studies	have	shown	that	such	solutions	tend	to	have	a	positive
return	on	investment	in	the	long	run	(taking	around	five	years	to	achieve	a
benefit).

Given	that	the	value	and	benefits	come	from	a	wide/standardized	adoption	of	the
technology,	and	given	the	extent	of	the	medical	network	of	many	countries,	it	is
not	hard	to	see	how	this	type	of	endeavor	is	fraught	with	political	complexities.

Can	blockchain	networks	improve	an	area	that	has	been	long	touted	as	a	prime
area	of	innovation	for	centralized	technologies?	While	technically	we	can
envision	an	elegant	blockchain	solution	where	clinics	and	hospitals	join	the
network	to	get	access	to	the	patient's	record,	could	the	real	challenge	lie	in
governance?

Finance	–	letter	of	credit
At	this	point	of	the	book,	you	should	be	familiar	with	the	concept	of	the	letter	of
credit.	However,	let's	quickly	recap	the	concept	behind	it,	illustrated	in	the
following	diagram:

The	letter	of	credit	is	a	payment	vehicle	whereby,	on	request	from	a	buyer,	a
bank	will	issue	a	letter	of	credit	to	a	seller,	stating	that	provided	that	the	terms
and	conditions	are	met,	payment	will	be	issued.	While	this	process	is	very	much
ingrained	in	international	trade,	the	use	of	letters	of	credit	is	a	very	old	process
that	has	its	root	in	the	First	Crusade,	where	the	Knights	Templar	needed	to	find	a
way	to	allow	pilgrims	to	travel	to	Jerusalem	without	the	danger	of	carrying
money	around.

Today's	letter	of	credit	process	is	a	complex	one.	While	examples	typically
involve	two	banks,	the	reality	is	that	there	will	be	many	more	participants
involved	in	such	a	network.	This	translates	into	a	process	that	is	costly	and
constrained	by	the	time	it	takes	to	execute	it.

A	blockchain	network	can	create	an	opportunity	to	optimize	the	process;	with	a
blockchain	network,	the	letter	of	credit	is	stored	on	the	ledger,	and	this	guards
against	a	double-spending	scenario,	whereby	the	owner	of	the	letter	could

attempt	to	cash	it	again.

The	benefit	is	measured	by	the	reduction	in	the	time	delay	and	the	cost,	but	it
also	provides	the	major	benefit	of	reducing	the	underlying	risks	associated	with
such	a	transaction.	Finally,	banks	can	also	now	consider	introducing	new
services,	such	as	the	ability	to	make	incremental	payments	to	the	seller.

The	fact	that	transactions	on	the	ledger	are	final	is	what	makes	this	scenario
appealing	to	banks.	It	also	gives	us	the	ability	to	start	with	a	smaller	network,	get
early	value,	and	expand	as	the	solution	becomes	proven,	essentially	reducing	the
amount	of	early	coordination	required	to	establish	the	network.

From	benefits	to	profits
Whatever	the	market	or	the	business	model,	there	must	be	a	return	on	the
investment	in	such	a	way	that	the	following	formula	holds	true:

Value	created	by	blockchain	-	Network	operation	cost	>	0

Essentially,	with	a	positive	return,	and	out	of	common	business	interests,	a
network-level	business	model	can	emerge.	Obviously,	the	objective	will	be	to
maximize	the	value	and	minimize	the	costs,	thereby	delivering	higher	margins.	It
is	not	hard	to	understand	that	when	the	network	can	deliver	a	high	margin	of
benefits,	organizations	will	flock	to	the	network,	eager	to	join.	That	is,	unless	the
business	model	favors	a	few	at	the	expense	of	many.

Thus,	the	selection	of	a	business	model	that	is	fair	and	suitable	for	most	of	its
members	will	be	a	deciding	factor	in	the	success	or	failure	of	the	network.

Network	business	model
Let's	now	look	at	the	various	business	models	that	have	been	used	so	far:

Founder-led	network
Consortium-based	network
Community-based	network
Hybrid	models

We	will	be	discussing	each	of	these	models	in	the	following	sections.

Founder-led	network
There	are	many	valid	situations	where	the	founder-led	network	can	be	valuable,
and	we	will	cover	those	shortly.	A	normal	founder-led	network	will	have	the
following	architecture:

However,	we	will	start	with	a	warning:	a	founder-led	network	should	not	be	a
way	to	avoid	hard	business	discussions	with	potential	network	participants.

From	our	time	working	in	this	field,	we	have	come	to	interact	with	organizations
that	really	believe	in	the	value	of	blockchain	networks,	but	are	feeling
overwhelmed	at	the	idea	of	decentralizing	control	of	the	network.	They	end	up
creating	a	roadmap	where	their	initial	stage	is	to	dive	into	the	technology	and
postpone	the	business	discussion	until	subsequent	phases.	The	end	result	is
typically	a	fabric	network	hosted	within	the	founder	infrastructure,	exposing	the
network	through	an	API	gateway.	In	some	cases,	it	goes	as	far	as	not	providing	a
different	identity	(that	is,	a	private	key	and	certificate)	to	the	participants.	The
risk	here	is	that	while	the	solution	is	technically	viable,	it	fails	to	deliver	value
according	to	the	tenets	of	blockchain	networks.

This	is	not	to	say	that	organizations	should	not	adopt	a	founder-led	approach
with	a	phased	roadmap,	but	it	is	important	to	get	buy-in	from	potential
participants	early	in	the	establishment	of	the	network	to	avoid	either	a	lack	of
adoption	or	significant	rework	efforts.

The	founder-led	network	is	typically	leveraged	by	the	following	types	of
organization:

Startups:	They	tend	to	have	a	unique	perspective	on	their	industry	and
bring	innovation	and	fresh	ideas.	Their	business	model	is	typically	oriented
toward	providing	an	added	value	service	to	the	industry.	While	innovation
may	propel	them	to	industry	recognition,	their	success	hinges	on	credibility
and	funding.
Industry	leaders:	From	their	industry	perspective,	they	have	enough
influence	to	establish	their	network.	They	get	the	support	of	their	suppliers
and	other	organizations	to	define	the	agenda	and	use	cases	to	support.
Interdepartmental	blockchain	projects:	This	model	may	not	initially
qualify	as	a	business	model,	given	that	it	is	meant	to	serve	the	purpose	of
internal	coordination	in	an	organization,	but	the	reason	for	bringing	it	up
here	is	that	those	projects	are	good	candidates	to	evolve	beyond	the
boundary	of	the	organization.

As	a	founding	member	of	the	network,	these	organizations	get	the	opportunity	to
define	the	policies	and	the	focus	of	the	network.	Organizations	that	succeed	with
their	network	get	a	leadership	position	and	can	hope	to	capture	the	value	of	the
network.

However,	these	advantages	do	come	at	the	risk	of	the	need	to	convince	other
organizations	to	join.	They	also	bear	the	complete	burden	of	investing	capital	to
get	the	project	started	and	to	get	the	required	expertise	to	deliver	the	solution.
They	are	also	exposed	to	the	risk	of	significant	rework	if	other	industry	leaders
request	changes	before	joining.

Consortium-based	network
A	consortium	is	a	grouping	of	two	or	more	organizations	with	a	common
business	objective	that	is	realized	through	the	business	network.	The	architecture
of	this	network	is	as	follows:

These	organizations	will	often	be	in	the	same	industry	or	in	closely	related
industries.	The	point	is	that	their	association	is	derived	from	a	level	of	synergy	in
their	processes	and	a	common/shared	benefit	in	cooperating	through	the
consortium.

A	key	feature	of	a	consortium	is	that	each	member	retains	their	legal	entity	and
status.	Through	the	creation	of	the	consortium,	they	will	typically	enter
contractual	and	legal	agreements	that	will	guide	the	governance,	activities,	and
investments	required	to	turn	their	vision	into	a	reality.

We	make	a	distinction	between	founders	and	members	since	the	former	will
have	typically	faced	a	similar	situation	as	the	organization	adopting	a	founder-
led	network	model.	They	will	have	faced	similar	issues,	risks,	and	benefits	as	the
founder-led	network,	but	they	will	offset	the	risks	through	expanded	industry
participation.	Consortium	founders	may	also	choose	to	monetize	the	network	as
other	organizations	join.

Additionally,	members	of	a	consortium	may	have	taxation	benefits,	contribute	to
improving	the	regulatory	posture	of	the	industry,	and	create	a	voice	that	has
increased	influence.	However,	they	are	also	exposed	to	potential	liability	and
nonperformance,	where	one	founder	may	not	be	able	to	contribute	to	an

equivalent	level	as	the	other	founders.

Community-based	network
The	community-based	network	is,	in	essence,	a	more	informal	consortium	of
organizations	that	are	like-minded.	Together,	they	form	a	business	ecosystem
that	aims	to	foster	collaboration	across	different	industries	to	create	new	business
opportunities.	The	architecture	of	this	network	is	as	follows:

In	this	model,	the	solution	may	evolve	into	a	marketplace	where	each	member
may	work	to	offer	added-value	services.	The	power	of	this	model	comes	from
the	implicit	free	structure	and	the	freedom	for	the	best	idea	to	surface.	This	is	the
best	model	to	naturally	support	the	concept	of	a	decentralized	network	and
governance.	It	can,	however,	suffer	from	the	same	issues	as	the	consortium	if	the
contributions	of	its	members	are	not	well	aligned	and	the	potential	liabilities	are
ignored.

Hybrid	models
Business	models	are	not	static	and	will	evolve	over	time.	So,	while	a	network
may	start	as	a	community,	it	is	conceivable	that	it	could	evolve	into	a
consortium.	Furthermore,	any	of	these	models	can	benefit	from	the	two	hybrid
models	that	we	will	be	discussing.

Joint	venture
In	the	joint	venture	model,	a	few	organizations	agree	to	form	a	new	legal	entity
that	is	jointly	owned.	Each	organization	can	contribute	to	the	funding	and	the
equity,	and	the	revenue	and	operational	expense	are	shared	across	the	parties.
The	control	of	the	joint	venture	lies	in	the	parties	that	form	it,	not	with	the	joint
venture	itself.

New	corporation
The	new	corporation	model	is	essentially	similar	to	the	joint	venture	model,	but
is	a	complete	spin-off	from	an	enterprise	or	a	consortium.	This	new	corporation
(NewCo)	may	provide	a	service	to	the	parties	that	contributed	to	its	creation;
however,	the	profit	and	loss	are	completely	owned	by	the	NewCo.

Role	of	governance	in	a	business
network
Having	reviewed	the	various	business	models,	we	can	see	that	the	control	that
each	participant	has	will	vary	based	on	that	model.	By	properly	understanding
the	model	and	the	interests	of	each	party,	we	can	create	a	decision	process	that
makes	sense	to	everyone.

So,	while	we	understand	that	governance	is	about	the	process	to	reach	a
decision,	should	every	single	business,	operational,	and	technical	decision	be
managed	and	tracked	by	the	governance	process?	Some	would	argue	that	only
important	topics	should	be	covered	by	the	governance	process,	but	then	what	are
the	important	topics?	This	is	the	role	of	a	governance	model:	defining	each
decision	domain	and	making	sure	everyone	understands	the	level	of	ceremony
(that	is,	the	formalisms	and	official	processes)	to	each	category	of	decision.	A
bug	fix	to	a	smart	contract	may	not	require	much	attention,	but	an	upgrade	to	the
blockchain	technology	may	require	a	heightened	degree	of	focus.	Agreeing
upfront	on	how	each	of	these	categories	should	be	handled	will	help	current	and
future	participants	understand	the	expectations	that	will	be	placed	on	them.

Independent	of	the	process	complexity,	another	consideration	that	will	need	to	be
addressed	will	be	the	centralization	versus	decentralization	of	the	decision
making.	Distributing	the	power	of	decision	making	may	make	the	process	seem
fair,	reduce	the	risk	of	undue	control,	and	encourage	free	thinking,	but	in	doing
so,	it	may	create	delays	in	the	achievement	of	a	consensus.

While	this	makes	sense	in	the	context	of	a	community-driven	network,	would	it
work	with	a	founder-led	network?

Probably	not.	If	the	founder	is	investing	capital	and	resources,	they	may	not
want	to	share	control	over	the	network.	Keep	in	mind	that	this	is	not	an	absolute
rule.	How	critical	the	decision	is	will	play	a	large	role	in	the	amount	of	control
that	is	applied.	Going	back	to	our	previous	example	of	a	bug	fix	on	a	smart
contract,	it	could	be	expected	that	the	decision	as	to	when	to	deploy	should	be

decentralized,	but	that	the	decision	as	to	the	next	feature	to	implement	should	be
centralized.

The	following	table	shows	the	relationship	between	governance	and	business
models,	and	(generally	speaking)	how	the	business	model	will	drive	the
governance	structure.	Essentially,	we	can	see	that	on	both	sides	of	the	scale,	we
have	the	community-based	network,	which	tends	to	be	a	completely
decentralized	business	model,	and	thus	can	only	survive	in	a	decentralized
governance:

An	attempt	at	centralizing	governance	would	probably	compromise	its	very
existence	as	the	community	members	would	either	reject	the	control	or	push	for
the	creation	of	a	consortium.	On	the	other	end	of	the	spectrum,	we	have	the
founder-led	network,	which	by	its	very	own	nature	tends	to	retain	control	in	the
founding	organization.	Consortium	business	models	tend	to	be	variable	and
depend	very	much	on	their	own	individual	nature.	A	highly	regulated	industry
may	require	an	equivalent	high	degree	of	centralization	to	ensure	that	all	parties
adhere	to	the	established	standards.	Then	again,	a	consortium	could	achieve
decentralized	governance	by	imposing	rules	or	adopting	a	consensus	mechanism
for	decision	making.

To	conclude	our	examination	of	the	role	of	governance	in	a	business	network,
let's	quickly	look	at	the	kinds	of	decisions	that	a	business	network	will	need	to
address:

Membership	life	cycle:	Decisions	associated	with	the	process	of	on-
boarding	and	off-boarding	participants	to	the	network.
Funding	and	fees:	Decisions	focused	around	how	the	network	will	be
funded.	This	may	cover	areas	such	as	centralized	infrastructure,	common
services,	staffing,	and	so	on.
Regulation:	Most	industries	need	to	meet	specific	regulations	that	are	often

geographically	bound.	This	category	focuses	on	key	decisions	to	ensure	that
these	regulations	are	met	and	enforced.
Education:	Decisions	on	the	level	of	training	to	provide	to	members	and
external	organizations	regarding	the	use	of	and	integration	into	the	network.
Service	life	cycle:	All	decisions	related	to	the	IT	components,	covering
aspects	such	as	the	deployment	of	new	smart	contracts	all	the	way	to
system	updates.
Disputes:	Because	disputes	are	almost	always	unavoidable,	these	decisions
deal	with	the	resolution	process.

In	the	next	section,	we	will	dive	into	each	of	these	areas	and	explore	some	of
their	intricacies.	However,	it	is	worth	noting	that	in	every	category	of	decision,
there	will	be	a	balancing	act	between	the	following:

Cost	versus	risk
Competition	versus	cooperation
Formalism	versus	agility

Business	domains	and	processes
In	this	section,	we	will	look	at	the	scope	of	processes	that	a	governance	model
should	aim	to	address.	Each	of	these	areas	of	decisions	should	be	considered	by
any	network	to	avoid	bad	surprises.	Not	every	decision	needs	to	be	bound	by	a
formal	process,	but	considering	these	elements	will	avoid	bad	surprises	down	the
road.

Membership	life	cycle
As	we	know,	a	blockchain	network	is	meant	to	be	fully	decentralized.	Thus,	the
expansion	of	participants	is	a	normal	thing	that	we	would	expect	to	see	in	a
healthy	network.

However,	since	this	is	an	enterprise-grade	network	that	is	subject	to	rules	and
regulations,	there	are	things	that	need	to	be	established	upfront	during	network
formation	and	the	on-boarding	of	new	participants:

Who	owns	the	privilege	to	invite	organizations	to	the	network?
This	should	include	considerations	as	to	who	can	submit	a	proposal	to
create	a	new	organization,	but	should	also	include	considerations	for
channel-level	invitation.	Are	there	privacy	and	confidentiality	constraints
that	will	need	to	be	accounted	for	during	the	on-boarding?
What	are	the	minimum	security	requirements	that	the	organization
needs	to	meet?
An	organization	that	cannot	properly	secure	their	peers	would	risk	exposing
their	ledger	data	and	compromising	their	private	keys.	Dealing	with
fraudulent	transactions	would	lead	to	chaos	and	painful	investigation.
Clearly	articulating	the	security	requirements	will	help	a	new	participant
understand	the	level	of	investment	they	need	to	make.
What	are	the	standard	contractual	agreements	that	participants	should
accept?
As	we	mentioned	in	previous	chapters,	the	smart	contract	should	be
accepted	as	the	law	within	the	network,	but	this	needs	to	be	bounded	by
contractual	agreements	that	not	only	recognize	this	fact,	but	also	state	the
expectation	of	the	participant	and	the	dispute	processes.
What	are	the	IT	service-level	agreements	that	the	participant	will	need
to	adhere	to?
As	we	have	seen	in	Chapter	8,	Agility	in	a	Blockchain	Network,	getting	an
agreement	on	the	frequency	of	promotion	to	smart	contracts	and	the
implicit	evolution	of	the	integration	layer	is	important.	Now	this	is	an
example,	but	from	a	service-level	agreement,	there	are	other	aspects,	such
as	availability,	performance,	and	throughput,	that	can	impact	the	network.

Through	the	on-boarding	process,	an	organization	will	need	to	deploy	its	own
infrastructure,	integrate	their	transactions	into	their	own	enterprise	system,	and
complete	a	round	of	testing	before	they	can	actually	start	transacting.	During
their	life	on	the	network,	the	governing	body	may	dictate	that	some	audits	should
be	performed	on	the	participant's	infrastructure	to	demonstrate	adherence	to	the
terms	and	conditions.

A	situation	that	is	often	overlooked	is	the	event	of	an	organization	off-boarding
the	network.	There	could	be	two	events	that	cause	this	to	occur:

The	participant's	interest	in	the	network	changes	and	they	no	longer	want	to
transact
A	breach	of	contract	or	a	dispute	causes	the	participant	to	be	removed

No	matter	what	the	reason	is,	if	there	are	no	provisions	for	this	event,	there	can
be	issues	related	to	the	ownership	of	the	organization's	data.	While	the
transaction	data	is	shared	in	the	context	of	a	legal	agreement,	the	parties	may
agree	to	have	the	distributed	ledger	stored	in	everyone's	peers,	but	once	that
agreement	comes	to	an	end,	what	happens?

Funding	and	fees
The	network	will	not	operate	itself.	There	are	smart	contracts	to	develop,
common	infrastructure	to	deploy	(ordered	nodes,	for	example),	legal	agreements
to	be	written,	and	so	on.

The	model	that	will	be	adopted	here	will	vary	widely	depending	on	the	chosen
business	model.	A	founder-led	network	may	incur	all	the	funding	costs,	but
might	in	turn	charge	a	fee	that	will	not	only	cover	the	cost,	but	also	generate	a
profit.	On	the	other	hand,	a	community-driven	network	may	choose	to	have
participants	cover	the	cost	of	those	common	elements.

In	any	case,	the	governance	should	not	only	define	the	funding	and	fee	structure,
but	should	also	consider	how	usage	should	be	monitored	and	how	billing	is
performed.

Regulation
This	area	will	depend	largely	on	the	industry	and	geography	in	which	the
network	is	operating,	but	at	that	level,	there	should	be	an	identification	of	the
compliance	requirements	and	the	regulations	that	participants	are	meant	to
adhere	to.

A	good	example	is	the	General	Data	Protection	Regulation	(GDPR),	which
has	recently	come	into	effect.	GDPR	is	a	regulation	proposed	by	the	European
Commission	to	strengthen	and	reinforce	data	privacy	rules.	Under	the	new	law,
users	can	request	to	have	their	personal	data	permanently	erased	from	any
organization.	Ignoring	such	regulations	could	result	in	a	smart	contract	that
persists	personal	information,	creating	a	major	problem	for	all	participants	of	the
network	when	a	request	for	erasure	is	received.

In	this	area,	the	focus	should	be	on	the	following:

Identifying	the	relevant	regulations
Auditing	smart	contracts	and	participants	(where	applicable)	to	ensure
compliance	is	met

Education
This	may	not	be	applicable	to	all	types	of	business	model.	For	example,	a
community-driven	model	may	choose	not	to	provide	education	services,	letting
their	participants	manage	it	on	their	own,	whereas	a	founder-led	network	may
decide	to	invest	in	education	to	expedite	the	on-boarding	process	and	recoup	the
investment	faster.

Service	life	cycle
The	service	life	cycle	deals	specifically	with	the	technology	side	of	the	network.
A	lot	of	consideration	needs	to	be	put	in	up	front,	from	the	initial	design	and
implementation	to	the	operation	of	the	network.

In	the	initial	stages	of	the	network,	key	decisions	will	include	such	areas	as	the
following:

Design	authority	and	standards
Data	governance
Configuration	management
Key	management
Testing	processes

Once	the	network	is	ready	for	prime	time,	the	operational	aspect	will	then
quickly	surface:

Infrastructure	operation	(network,	server,	storage)
Changes,	upgrades,	release	management,	maintenance
Business	continuity	plan,	archiving,	backups
Security,	controls,	policy	enforcement
Capacity,	scalability,	and	performance
Incident	and	problem	management

Disputes
Nobody	likes	to	think	about	disputes	any	more	than	they	would	the	off-boarding
process;	however,	it	is	important	to	define	a	process	to	address	these	disputes.	In
that	context,	the	governance	should	cover	areas	such	as	the	following:

Raising	grievances:	Where	should	those	issues	be	raised?	We	will	cover
the	governance	structure	in	the	next	section,	but	what	if	you	are	working	in
a	truly	decentralized	model?	Do	you	have	a	forum	to	raise	this?
Investigation:	How	will	facts	be	gathered?	How	will	the	issue	be
documented?	If	a	smart	contract	transaction's	output	is	questioned,	will	it
(and	its	corresponding	customer)	be	extracted	from	the	ledger?
Resolution:	Disputes	will	not	always	have	happy	conclusions,	but	what	is
the	process	to	resolve	these?	Is	there	a	subset	of	participants	that	should
decide	on	the	issue?	Should	this	become	a	legal	prosecution?

Governance	structure
So	far,	we	have	covered	the	various	business	models,	looked	at	the	impact	of
centralization	versus	decentralization,	and	explored	the	various	kinds	of
decisions,	along	with	the	roles	and	responsibilities	required	to	support	those
decisions.

We	will	now	see	how	organizations	have	been	structuring	themselves	to	provide
a	coherent	approach	that	deals	with	the	different	levels	of	focus	that	decision
makers	will	have,	depending	on	their	role.

While	the	presentation	of	centralized	and	decentralized	governance	will	appear
very	distinct	from	each	other,	in	real	applications	there	are	shades	of	grey,	where
some	functions	may	be	centralized	and	others	decentralized.	Again,	much	of	this
will	have	to	do	with	the	business	model	and	imperatives	driving	the	network.

Centralized	governance
While	a	network	may	adopt	centralized	or	decentralized	governance,	each
organization	will	also	have	their	own	mechanism	to	control	who	makes
decisions.	Typically,	organizations	will	rely	internally	on	centralized	governance.
The	implication	of	this	is	that	we	need	to	consider	not	only	network	governance,
but	also	each	organization's	structure,	as	shown	in	the	following	diagram:

In	a	centralized	model,	decisions	tend	to	flow	from	top	to	bottom,	and	only
unresolved	issues	at	the	lower	tiers	of	the	organization	percolate	to	the	top.	This
creates	a	framework	where	there	is	a	clear-cut	process	to	deal	with	problems	and
vision,	but	which	leaves	little	room	for	changes	in	structure.

In	this	model,	we	typically	see	three	major	layers	of	governance:

Strategic	governance
Operational	governance
Tactical	governance

The	next	subsections	will	define	each	one	and	explore	the	types	of	decision
makers	for	each	layer.

Strategic	governance
Strategic	governance	represents	the	top	of	the	decision	pyramid.	This
governance	tier	requires	executive	sponsorship	from	the	various	organizations
and	business	units,	and	is	responsible	for	ensuring	that	the	vision	and	strategy
align	with	network	objectives.	It	should	also	be	focused	on	ensuring	that	the
business	benefits	are	realized.

Strategic	governance	will	be	focused	on	the	following:

Creating	a	common	business	vision
Defining	a	clear	mandate	and	governance	structure	(stakeholder-driven)
Setting	the	agenda	as	to	the	priorities	of	the	network
Ensuring	that	the	business	objectives	are	met
Developing	and	evolving	network	competencies

Operational	governance
Operational	governance	focuses	on	converting	the	vision	into	a	program	with
milestones	that	meet	the	requirements	of	the	network.	This	will	normally	involve
business	stakeholders,	directors,	IT	architects,	legal	counselor,	and	so	on.

As	a	result	of	these	concerns,	the	focus	will	be	on	the	following:

Defining	ownership
Developing	and	maintaining	standards,	privacy	requirements,	and
regulation
Creating	a	common	approach	for	services	and	smart	contracts
Managing	a	common	approach	for	defining	business	and	technical
requirements
Common	technology	infrastructure

Tactical	governance
Tactical	governance	is	focused	on	the	day-to-day	activities	that	are	centered
around	the	running	and	operation	of	the	network.	At	this	level,	the	focus	will	be
on	aspects	around	the	design,	build,	and	operation	of	the	network.	It	will	include
various	stakeholders	from	business,	legal,	and	technical	teams.	Tasks	will
include	elements	such	as	the	following:

Enforcing	standards
Smart	contract	code	reviews
Deployment	planning
Organization	on-boarding
Security	audits
Reporting

Decentralized	governance
The	decentralization	of	governance	is	a	way	to	bring	transparency	and	fairness	to
the	decision	process.	Now	keep	in	mind	that	every	organizations	have	their	own
governance	structure	(The	three	tiers)	and	that	those	governance	body	need	to
come	to	an	agreement	on	the	decision.		This	is	no	trivial	task	considering	that	the
strategic	governance	of	each	organization	may	have	different	imperative.		This
means	that	decisions	need	to	be	reached	through	a	form	of	consensus—a	voting
process—	which	is	fair,	transparent	and	brings	together	the	governance	body	of
every	organization	of	the	network.

It	also	retains	the	same	levels	of	governance	(strategic,	operational,	and	tactical)
as	a	centralized	network,	but	everything	will	be	done	in	an	open	model	where	all
topics	are	discussed	in	community	calls/events.	In	such	a	model,	the
documentation	of	the	decisions	is	even	more	important	to	ensure	the	proper	level
of	transparency.	Without	a	public	audit	trail,	how	can	one	know	that	the	decision
process	is	equitable?

It	should	be	noted	that	while	the	model	is	decentralized	and	may	be	more
lightweight/agile,	it	is	no	less	important	to	properly	document	the	model	and	see
the	participant's	buy-in.	Note	that	decentralized	does	not	mean	easier.	In	fact,
while	decentralized	network	governance	might	be	more	closely	aligned	to	the
nature	of	blockchain	technologies,	it	introduces	some	interesting	challenges.

For	instance,	since	there	is	no	central	body	that	controls	the	strategic	decision,
how	can	a	network	move	towards	a	common	goal?	How	can	you	avoid	a	hard
takeover	or	network	fragmentation?

Such	a	model	will	work	well	while	the	business	objectives	are	aligned.	However,
when	a	corporation's	agenda	is	delayed	because	the	majority	of	the	community	is
voting	for	different	priorities,	this	is	bound	to	generate	tension,	disputes,	and
delays.	As	we	have	seen	with	the	bitcoin	block	size	debate,	getting	a	consensus
takes	time	and	creates	the	opportunity	for	fragmentation.	This	is	not	to	say	that
the	solution	lies	in	a	centralized	model—in	fact,	similar	risks	exist	in	that	model
too—but	the	decentralized	nature	of	the	decentralized	model	may	mean	that

participants'	business	objectives	are	more	loosely	coupled.

Governance	and	the	IT	solution
So	far	in	this	chapter,	we	have	been	focusing	primarily	on	the	human	side	of
governance.	We	have	looked	at	the	impact	of	the	business	model	on	governance,
the	business	processes	to	consider,	and	the	various	potential	structures,	but	what
about	the	technology?	What	is	the	impact	of	the	governance	model	on
technology,	and	how	does	technology	impact	governance?

While	blockchain	projects	might	be	primarily	focused	around	solving	business
and	enterprise	issues,	the	foundation	still	relies	on	technology.	In	this	section,	we
will	look	at	the	major	phases	of	the	life	cycle	of	the	network,	from	inception	all
the	way	to	operation,	and	see	how	some	of	those	activities	can	be	automated	and
supported	by	technology.

We'll	focus	on	the	topic	of	on-boarding.	As	you	now	know,	the	system	ledger	is
used	to	store	the	organizations,	the	policies,	and	the	channels	that	make	up	the
network.	Storing	configurations	on	the	ledger	means	that	any	modifications	need
to	be	signed	and	approved.	This	is	great	from	an	audit	perspective	as	it	provides
the	configuration	with	the	characteristics	of	the	blockchain	approach	itself:

Consensus:	Configuration	changes	are	endorsed	and	validated	by	members
of	the	network	according	to	the	defined	policies.
Provenance:	Configuration	changes	are	signed	by	the	initiator	of	the
change	and	all	other	endorsers,	thus	preserving	the	provenance	of	the
change.
Immutable:	Once	the	configuration	block	is	added	to	the	blockchain
network,	it	cannot	be	modified.	A	subsequent	transaction	is	required	to
further	alter	the	configuration.
Finality:	As	the	transaction	is	recorded	on	the	system	ledger	and	distributed
to	all	peers	of	the	network,	it	provides	a	unique	and	final	place	to	assert	the
configuration	of	the	network.	No	need	to	look	at	configuration	files	to
understand	to	which	peer	your	anchor	should	communicate	with.

Now	while	this	is	a	highly	valuable	feature,	it	comes	with	a	level	of	complexity.
The	high-level	process	to	modify	the	configuration	is	as	follows:

1.	 Retrieve	the	latest	configuration	block
2.	 Decode	the	configuration	block	and	alter	the	configuration	accordingly
3.	 Encode	the	block	and	calculate	the	delta/difference	compared	to	the

previous	block	to	establish	the	RW	set
4.	 Sign	the	transaction	and	share	it	with	other	participants	so	that	they	can	sign

it	according	to	the	network	policy
5.	 Submit	the	signed	transaction	back	to	the	network

These	steps	require	a	good	understanding	of	the	foundation	of	Hyperledger
Fabric	and	a	way	to	track	and	manage	the	signing	by	other	parties.	Given	its
decentralized	nature,	there	might	be	a	lot	of	different	parties	that	need	to	be
involved.	This	is	one	of	the	reasons	the	on-boarding	process	is	so	important	to
plan	properly.

Networks	should	ensure	that	they	define	this	process	and	the	required
automation	early	on.	While	organizations	may	build	their	own,	they	can	also	rely
on	prebuilt	solutions.	In	the	case	of	IBM,	the	IBM	blockchain	platform	provides
the	ability	to	streamline	the	governance	of	the	network.	In	the	next	section,	we
will	look	at	how	the	on-boarding	is	done	with	the	IBM	blockchain	platform.

Managed	on-boarding
In	order	to	follow	through	the	exercise,	you	can:

1.	 Sign	up	to	the	IBM	Cloud	here:	https://console.bluemix.net/
2.	 Add	the	IBM	blockchain	platform	service	to	your	account	using	this

link:
https://console.bluemix.net/catalog/services/blockchain

The	starter	plan	should	be	selected	and	the	reader	should	review	the	terms	and	conditions	to
understand	the	potential	costs.

As	the	network	is	decentralized,	an	invitation	can	be	issued	by	any	organization
of	the	network,	unless	the	policies	dictate	otherwise.

The	process	starts	with	the	issuance	of	an	invitation	through	the	following	form,
which	can	be	accessed	from	the	Membership	menu	of	the	dashboard:

Upon	submitting	this	form,	the	system	will	send	a	unique	URL	to	the	operator	of
the	new	organization.	Behind	the	scenes,	it	also	creates	an	enrollment	request
against	the	root	fabric-ca	of	the	network.

To	accept	the	invitation,	the	operator	signs	up	on	the	platform,	provides	the
organization's	name,	and	upon	accepting	the	invitation,	the	system	will
automatically	alter	the	network's	configuration	according	to	the	defined	policies
and	include	the	definition	of	the	new	organization.	From	this	standpoint,	the

https://console.bluemix.net/
https://console.bluemix.net/catalog/services/blockchain

operator	of	the	new	organization	gets	access	to	the	operational	dashboard	and
can	start	joining	channels	and	deploying	smart	contracts.	The	dashboard	will
look	like	the	following	screenshot:

The	operational	dashboard

Now,	since	all	interactions	on	the	network	are	permissioned,	the	platform
provides	a	voting	mechanism	that	allows	participants	to	accept	or	reject	changes,
as	shown	in	the	following	screenshot:

Voting	mechanism	that	allows	participants	to	accept	or	reject	changes

In	this	case,	when	the	new	organization	is	invited	to	join	a	channel,	other
organizations	will	get	to	vote	on	acceptance	of	the	modification.	They	will	be
able	to	review	the	request	in	their	notification	portal	and	approve	or	reject	it,	as
shown	in	the	following	screenshot:

Reviewing	the	requests

While	there	are	many	more	advantages	and	benefits	to	the	IBM	blockchain
platform,	the	intent	here	was	to	show	a	way	in	which	the	IT	solution	can	support
and	facilitate	some	of	the	key	governance	processes	associated	with	an
organization's	on-boarding.

Summary
In	a	sense,	governance	is	the	human	side	of	a	business	network.	It	is	about	how
people	come	together	and	structure	the	decision-making	process	to	ensure	that
all	relevant	parties	are	either	consulted	or	responsible	for	the	decision.
Governance	needs	to	cover	a	wide	spectrum	of	topics.

Technologists	might	be	less	enthused	about	the	topic	than	others,	but	having	a
basic	view	of	what	it	entails	is	useful	to	understand	our	working	environment.

To	sum	things	up,	in	this	chapter,	we	have	explored	how	business	models	can
have	a	profound	impact	on	governance.	Using	these	models,	we	then	looked	at
how	we	can	derive	structures	that	meet	business	needs	by	addressing	the	key
business	processes.	We	have	seen	how	organizations	need	to	consider	the
approach	of	a	centralized	versus	decentralized	governance	model.	Finally,	we
learned	that	governance	is	required	to	support	IT	solutions,	but	in	turn,	IT
solutions	need	to	support	the	governance	process.

A	final	point	to	keep	in	mind	is	that	business	models	can	be	fluid	things.	While
an	initiative	might	start	as	a	founder-led	network,	it	can	evolve	into	a	consortium
or	a	community-based	project.	This	is	important	to	note,	because	while	we
looked	at	each	model	in	isolation,	the	reality	is	that	they	are	bound	to	evolve
over	time,	but	need	to	remain	aligned	to	the	business	value	the	network	provides.

Hyperledger	Fabric	Security
Hyperledger	Fabric	is	a	modular	blockchain	system.	It	has	been	designed	to
allow	a	known	set	of	actors	to	participate	and	perform	actions	in	a	blockchain
network	(the	so-called	permissioned	blockchain).	Due	to	its	modular	nature,	it
can	be	deployed	in	many	different	configurations.	Different	deployment
configurations	of	Hyperledger	Fabric	have	different	security	implications	for	the
operator	of	the	network,	as	well	its	users.

At	its	core,	Hyperledger	Fabric	is	a	public	key	infrastructure	(PKI)	system	and
thus	it	inherits	the	security	(and	complexity)	associated	with	such	systems.	At
the	time	of	writing	this	book,	Hyperledger	Fabric	v1.1	has	been	released.

The	security	aspects	of	designing	and	implementing	a	blockchain	network	has	been	discussed
in	earlier	application	chapters,	we	intend	to	give	a	broader	as	well	as	a	more	in-depth	view	of
the	security	features	of	Hyperledger	Fabric	here.

We	will	be	covering	the	following	topics	in	this	chapter:

Design	goals	impacting	security
Hyperledger	Fabric	architecture	recap
Network	bootstrap	and	governance	–	the	first	step	towards	security
Strong	identities	–	the	key	to	the	security	of	the	Hyperledger	Fabric
network
Chain	code	security
Common	security	threats	and	how	Hyperledger	Fabric	mitigates	them
Hyperledger	Fabric	and	quantum	computing
General	data	protection	regulation	(GDPR)	considerations

Hyperledger	Fabric	design	goals
impacting	security
To	understand	the	security	of	Hyperledger	Fabric,	it	is	important	to	state	the	key
design	goals	that	impact	security:

Existing	members	should	determine	how	to	add	new	members	in	the
network:	The	admission	of	new	entities	in	the	network	must	be	agreed
upon	by	existing	entities	in	the	network.	This	principle	is	at	the	foundation
of	creating	a	permissioned	blockchain.	Instead	of	allowing	any	entity	to
download	software	and	connect	to	the	network,	network	members	must
agree	upon	a	policy	to	admit	new	members	(e.g.,	by	majority	vote),	which
is	then	enforced	by	Hyperledger	Fabric.	Upon	a	successful	vote,	the	digital
credentials	of	a	new	member	can	be	added	to	an	existing	network.
Existing	members	should	determine	how	to	update	configuration/smart
contract:	Similar	to	the	first	item,	any	change	in	the	configuration	of	the
network	or	deploying	or	instantiating	a	smart	contract	has	to	be	agreed	upon
by	the	network	members.	Taken	together,	the	first	and	second	points	give
Hyperledger	Fabric	the	capability	to	perform	a	permissioned	blockchain.
The	ledger	and	its	associated	smart	contracts	(chaincode)	may	be
scoped	to	relevant	peers	to	meet	broader	privacy	and	confidentiality
requirements:	In	public	blockchain	networks,	all	nodes	have	a	copy	of	the
blockchain	ledger	and	execute	smart	contracts.	To	maintain	confidentiality
and	scoping,	it	is	necessary	to	create	groups	of	peers	that	store	the	ledger
associated	with	their	transactions	(channels	and	channel	private	data	in
Hyperledger	Fabric).	The	smart	contracts	(chaincode	in	Hyperledger
Fabric)	that	update	such	a	ledger	will	be	scoped	to	the	members	of	such	a
group.

Only	members	participating	in	a	channel	have	to	determine	how	to	update	the	configuration
of	that	channel.

Smart	contracts	can	be	written	in	a	general	purpose	language:	One	of
the	main	design	goals	of	Hyperledger	Fabric	is	to	allow	smart	contracts	to
be	written	in	general	purpose	languages	such	as	Go	and	JavaScript.
Obviously,	allowing	general	purpose	languages	for	smart	contract	execution

exposes	the	system	to	a	variety	of	security	issues	if	there	is	no	governance
and	process	in	place	to	verify	and	deploy	smart	contracts	before	execution.
Even	then,	smart	contracts	written	in	a	general	purpose	language	should	be
reasonably	isolated	to	limit	the	harm	they	may	inadvertently	cause.
Transaction	integrity	must	be	ensured:	A	transaction	is	an	execution	of
smart	contract.	The	transactions	must	be	created	and	stored	in	a	way	which
will	prevent	them	from	being	tampered	with	by	other	peers	or	will	make	it
easy	to	detect	any	tampering.	Typically,	ensuring	transaction	integrity
requires	the	use	of	cryptographic	primitives.
Industry	standards	should	be	leveraged:	The	system	should	leverage
industry	standards	for	asserting	digital	identities	(for	example,	X.509
certificates),	as	well	as	for	communication	among	peers	(for	example,	TLS
and	gRPC).
Consensus	separation	from	transaction	execution	and	validation:
Existing	blockchain	networks	combine	transaction	execution	and	validation
with	achieving	consensus	among	nodes	of	a	blockchain	network.	This	tight
coupling	makes	it	difficult	to	achieve	pluggability	of	the	consensus
algorithm.
Pluggability	everywhere:	The	system	should	have	a	modular	design,	and
each	module	should	be	pluggable	through	standard	interfaces.	The	ability	to
plug	in	modules	specific	to	a	network	gives	Hyperledger	Fabric	the
flexibility	to	be	used	in	a	variety	of	settings.	However,	this	pluggability	also
implies	that	two	different	instantiations	of	blockchain	networks	based	on
Hyperledger	Fabric	may	possess	different	security	properties.

To	understand	how	these	principles	impact	the	security	of	Hyperledger	Fabric,
we	will	briefly	explain	the	architecture	of	Hyperledger	Fabric.	Refer	to	earlier
chapters	for	an	in-depth	architecture.

Hyperledger	Fabric	architecture	
The	Hyperledger	Fabric	architecture	can	be	illustrated	as	follows:

Hyperledger	Fabric	architecture

Fabric	CA	or	membership	service
provider
The	membership	service	provider	(MSP)	is	responsible	for	creating	digital
identities	for	peers	and	users	of	the	organization.	The	identities	of	peers	must	be
configured	in	an	existing	network	in	order	for	a	new	entity	to	participate	in	the
channel.

Fabric	CA	is	an	implementation	of	the	MSP	and	provides	a	mechanism	for
registering	users	from	a	network	member	and	issuing	them	digital	identities
(X.509	certificates).	Fabric	CA	typically	runs	inside	a	Docker	container.	Each
Fabric	CA	is	configured	with	a	backend	database	(the	default	being	SQLite,	with
other	options,	such	as	PostgreSQL	or	MySQL)	which	stores	the	registered
identities,	as	well	as	their	X.509	certificates.	Fabric	CA	does	not	store	the	private
keys	of	the	users.

Peer
A	peer	is	an	entity	that	participates	in	a	Hyperledger	Fabric	network.	Its	identity
is	determined	from	its	corresponding	membership	service	provider.	A	peer	is
responsible	for	deploying	and	instantiating	chaincode,	updating	the	ledger,
interacting	with	other	peers	to	share	private	data	associated	with	transactions,
and	interacting	with	the	ordering	service	as	well	as	smart	contracts	(chain	code,
in	the	preceding	screenshot)	that	it	runs.	Similar	to	Fabric	CA,	a	peer	also
typically	runs	inside	a	Docker	container.

Smart	contract	or	chaincode
Smart	contract	(SC)	is	application	logic,	written	in	a	high-level	language,	such
as	Go	or	JavaScript;	when	successfully	executed,	it	reads	or	writes	data	that
eventually	gets	committed	to	the	ledger.	A	smart	contract	does	not	have	direct
access	to	the	ledger.	A	peer	can	deploy	zero	or	more	smart	contracts	that	run	as
Docker	containers.	A	peer	can	also	deploy	multiple	versions	of	a	smart	contract.

Ledger
Each	peer	maintains	a	digital	ledger,	which	contains	a	record	of	all	committed
transactions	that	a	peer	has	received.	The	entries	in	the	ledger	are	stored	as
key/value	pairs.	Updates	to	the	same	key	will	replace	the	current	value	of	a	key
with	a	new	value.	The	old	value,	of	course,	will	stay	in	the	ledger.	To	provide
efficient	querying	of	the	latest	value	of	a	key,	a	node	can	store	the	latest	value	of
each	key	in	a	database	such	as	CouchDB.	This	database	is	referred	to	as	a	world
state	in	Hyperledger	Fabric.

Note	that	a	peer	will	only	receive	blocks	to	commit	to	its	ledger	from	the	channels	that	it
participates	in.

A	peer	can	be	part	of	zero	or	more	channels—	the	channels	are	not	shown	in	the
preceding	diagram	showing	Hyperledge	Fabric	architecture.

Private	data
With	Hyperledger	Fabric	v1.1,	peers	can	choose	to	selectively	share	private	data
with	a	subset	of	peers	in	the	channel	through	the	chain	private	data	experimental
feature	(https://jira.hyperledger.org/browse/FAB-1151).	The	blocks	on	the	ledger	only
contain	hashes	of	such	data,	while	the	private	data	is	stored	off	the	ledger	in	a
private	state	database.

https://jira.hyperledger.org/browse/FAB-1151

Ordering	service
The	ordering	service	is	responsible	for	receiving	the	executed	transactions	from
peers,	combining	them	into	blocks,	and	broadcasting	them	to	other	peers	on	the
same	channel.	The	peers	receiving	the	transaction	blocks	then	validate	it	before
committing	it	to	their	ledger.	It	is	the	responsibility	of	the	ordering	service	to	not
mix	the	blocks	intended	for	one	channel	on	another	channel.

In	version	1.0	of	Hyperledger	Fabric,	the	peers	would	send	a	transaction	(keys
and	associated	values,	along	with	the	read/write	set)	to	the	ordering	service.
Thus,	the	ordering	service	had	visibility	into	all	data	associated	with
transactions,	which	had	implications	from	a	confidentiality	standpoint.	In
version	1.1	of	Hyperledger	Fabric,	the	client	can	send	hashes	of	the	transaction
data	(input	and	read/write	set)	to	the	ordering	service	while	transferring	the	data
associated	with	a	transaction	directly	to	the	relevant	peers.

Presently,	the	ordering	service	is	implemented	using	Kafka	and	is	crash	fault
tolerant	(CFT),	but	not	Byzantine	Fault	Tolerant	(BFT).	But	this	is	a	point	in
time	statement	as	HyperLedger	is	purported	to	be	pluggable	that	includes	the
consensus	service.	Pluggability	implies	that	in	future	other	consensus	models
may	be	available.

Although	now	shown	in	the	diagram	depicting	Hyperledger	Fabric	architecture,
peers,	orderers,	and	fabric	use	a	pluggable	cryptography	service	provider,	which
allows	them	to	plug	in	new	crypto	algorithms	as	well	as	hardware	security
modules	(HSMs)	(https://en.wikipedia.org/wiki/Hardware_security_module)	for
managing	crypto	keys.

https://en.wikipedia.org/wiki/Hardware_security_module

Network	bootstrap	and	governance	–
the	first	step	towards	security
When	organizations	decide	to	form	a	permissioned	private	blockchain	network
using	Hyperledger	Fabric,	they	need	to	consider	several	governance	aspects,
which	will	ultimately	determine	the	overall	security	posture	of	the	network.
These	governance	aspects	include,	but	are	not	limited	to	the	following:

How	shall	the	network	be	bootstrapped	and	the	members	verified	to
create	the	network?	Network	bootstrap	is	the	first	step	in	creating	a
blockchain	network.	Different	entities	may	come	together	to	create	a
network.	The	entities	may	have	an	out-of-band	communication	to	agree
upon	with	the	first	set	of	members	and	establish	governance	policies,	which
will	be	discussed	next.
What	is	the	process	for	a	new	entity	to	join	the	network	(or	a
channel)?	Defining	a	policy	for	admitting	new	members	in	the	network	is
paramount	and	is	governed	by	the	business	needs	of	the	network.
Who	can	deploy	and	upgrade	chaincodes	on	peers	in	the
network?	Defining	a	process	is	important	to	prevent	a	malicious	or	buggy
chaincode	from	being	installed	on	one	or	more	peers	(see	Chapter	7,	A
Business	Network	Example).
What	is	the	data	model	that	will	be	stored	on	the	blockchain?	Members
must	agree	upon	a	common	data	model	that	will	be	stored	in	the
blockchain;	the	blockchain	cannot	be	useful	to	its	members	otherwise.	The
data	model	should	be	devised	so	that	it	does	not	run	afoul	of	any
compliance	regulations,	such	as	general	data	protection	regulations
(GDPR)	(https://gdpr-info.eu/).

https://gdpr-info.eu/

Creating	the	network
When	entities	decide	to	create	a	network,	they	must	decide	on	the	following:

Who	will	run	the	ordering	service
How	many	different	instances	of	ordering	service	will	be	in	the	network

The	role	of	the	ordering	service	is	critical	because,	depending	on	the
configuration,	it	has	visibility	into	transaction	hashes	or	the	transaction	data
across	all	channels	that	flow	through	it.	Thus,	the	entities	deciding	to	form	a
network	may	choose	to	trust	one	of	the	entities	to	act	as	the	ordering	service;
they	may	also	decide	to	trust	a	neutral	third	party	to	run	the	ordering	service.

The	ordering	service	can	view	all	transactions	(hashes	or	key/value	pairs)	across	all	channels
that	it	serves.	Thus,	if	it	is	necessary	to	hide	the	transaction	data	from	the	ordering	service,
only	hashes	of	the	read/write	set	in	a	transaction	should	be	sent	to	the	ordering	service	while
exchanging	the	data	directly	between	peers.

Once	an	ordering	service	has	been	established	for	a	network,	it	must	be
configured	with	the	digital	identities	of	peers	of	founding	members.	This	is
typically	done	by	configuring	the	digital	certificates	of	peers	in	the	ordering
service	genesis	blocks.	The	peers	must	also	be	configured	with	the	digital
identity	of	the	ordering	service.

Adding	new	members
The	founding	members	at	the	time	of	creation	of	a	network	or	a	channel	must
also	define	the	policy	on	how	new	members	will	be	admitted	into	the	network	or
a	channel.	By	default,	this	policy	is	simply	the	one	chosen	by	the	majority
(namely	two	out	of	two,	two	out	of	three,	three	out	of	four,	and	so	on).	The
members	may	decide	on	any	other	policy	for	admitting	new	members	in	the
network.	Any	change	in	the	policy	to	admit	new	members	will	typically	be
decided	through	a	business	agreement.	Once	an	agreement	is	reached,	the
channel	configuration	can	be	updated	per	the	current	policy	to	reflect	the	new
policy	for	admitting	new	members.

The	creation	of	the	genesis	block,	as	well	as	subsequent	transactions	to	update	configurations,
are	privileged	operations,	and	must	be	approved	by	the	peer	administrator	before	being
confirmed.

Deploying	and	updating	chaincode	
Once	members	have	decided	to	participate	in	a	channel,	they	may	choose	to
deploy	and	instantiate	chaincode	(a.k.a	smart	contract).	A	chaincode	defines	how
key/value	pairs	which	are	scoped	to	a	channel	will	be	updated	or	read	from.	A
chaincode	can	define	its	endorsement	policy—that	is,	it	may	require	a	digital
signature	from	some	or	all	peers	in	the	network.	Due	to	the	permissioned	nature
of	Hyperledger	Fabric,	a	chaincode	requiring	a	digital	signature	from	a	peer
(endorsement)	must	be	installed	and	instantiated	on	a	peer.	See	Chapter
5,	Exposing	Network	Assets	and	Transactions	and	Chapter	7,	A	Business	Network
Example,	for	more	details	on	deploying	chaincode.

Before	deploying	chaincode	on	a	channel,	it	is	expected	that	network	members
will	want	to	review	the	chaincode	to	ensure	that	it	conforms	to	their	policy.	This
process	can	be	formalized	into	chaincode	governance	to	require	mandatory
reviews	from	all	relevant	members	who	will	instantiate	the	chaincode	on	their
nodes.

Establish	a	process	for	deploying	chaincode	on	your	peer,	including	manual	reviews	and	the
verification	of	a	digital	signature	of	the	chaincode	author.

https://cdp.packtpub.com/hands_on_blockchain_development_with_hyperledger/wp-admin/post.php?post=117&action=edit#post_373

Data	model
The	entities	must	agree	upon	a	data	model	that	will	be	stored	in	a	blockchain,
which	in	turn	is	determined	by	the	chaincode.	The	founding	members	of	a
network	or	a	channel	deploying	a	chaincode	will	determine	the	key/value	pairs
that	get	stored	in	a	channel.	Furthermore,	the	member	will	decide	which	data
they	will	share	with	other	members,	and	which	data	they	will	keep	private	to
themselves	or	a	subset	of	members.	The	data	model	should	be	devised	so	that	it
is	useful	for	the	business	functions	that	members	desire	to	accomplish,	is
reasonably	future-proof,	and	does	not	inadvertently	leak	information.	Recall	that
all	participating	peers	in	a	channel	store	the	committed	transactions	(and	their
key/value	pairs).

Establish	a	process	for	defining	the	data	model	that	will	be	stored	in	a	channel.

The	preceding	steps	can	be	summarized	as	follows:

1.	 Determine	who	will	run	the	ordering	service
2.	 Configure	digital	identities	of	founding	members	in	the	ordering	service
3.	 Create	channels	and	determine	the	channel	policy	for	admitting	new

members
4.	 Define	the	governance	for	writing,	distributing,	deploying,	and	instantiating

chaincode
5.	 Establish	the	data	model

Strong	identities	–	the	key	to	the
security	of	the	Hyperledger	Fabric
network
Strong	identities	are	at	the	heart	of	Hyperledger	Fabric	security.	Creating,
managing,	and	revoking	these	identities	is	critical	to	the	operational	security	of
Hyperledger	Fabric-based	deployment.	The	identities	are	issued	by	a	MSP.	As
shown	in	the	previous	Hyperledger	Fabric	architecture	diagram,	one	logical	MSP
is	typically	associated	with	one	peer.	An	MSP	can	issue	any	appropriate
cryptographically	signed	identities.	Hyperledger	Fabric	ships	with	a	default
MSP,	(Fabric	CA),	which	issues	X.509	certificates	to	the	authenticated	entities.

Bootstrapping	Fabric	CA
Fabric	CA	can	be	configured	with	a	LDAP	server	or	run	in	a	standalone	mode.
When	running	in	a	standalone	mode,	it	must	be	configured	with	a	bootstrap
identity	that	gets	stored	in	the	backend	database	of	Fabric	CA.	By	default,	a
SQLite	database	is	used	but,	for	production	usages,	a	PostgreSQL	or	a	MySQL
database	can	be	configured.	Typically,	the	connection	between	the	Fabric	CA
server	and	its	database	is	over	TLS	if	a	standalone	server	is	used.

For	the	rest	of	the	chapter,	we	will	refer	to	the	bootstrap	entity	when	running
without	the	LDAP	server	as	the	ca-admin.	The	ca-admin	and	its	password	must	be
supplied	on	a	bootstrap	of	the	Fabric	CA,	when	running	without	LDAP	server.

In	order	for	the	ca-admin	to	interact	with	the	server,	it	must	submit	a	certificate
signing	request	(CSR)	to	the	Fabric	CA	server	to	obtain	a	X.509	certificate.
This	process	is	called	enrolling	an	identity,	or	simply	enroll.	With	a	X.509
certificate	in	possession,	the	ca-admin	can	then	add	other	users,	which	we	will
explain	next.

Keep	the	password	of	the	admin	user	in	a	safe	and	secure	place	since	this	is	the	root	user	of
your	organization.	Treat	it	as	securely	as	you	would	treat	the	password	of	a	root	Linux	user.
Use	it	to	create	a	new	user	with	appropriate	permissions,	but	never	use	this	user	for	any	other
operation,	except	in	the	case	of	a	security	breach,	where	this	user	can	be	used	to	revoke	the
certs	of	all	enrolled	entities.

Fabric	CA	provides	two	key	operations	in	the	system,	namely	register	and	enroll.
We	will	explain	these	operations	next.

Register
The	register	operation	adds	a	new	entity	specified	by	an	identifier	to	Fabric	CA.
The	register	operation	does	not	create	a	X.509	certificate	for	the	user;	that
happens	in	the	enroll	operation.	It	is	up	to	the	administrator	of	the	Fabric	CA	to
define	the	policies	and	procedures	for	adding	new	users	to	the	network.

There	are	some	important	points	to	consider	while	registering	the	users:

If	a	policy	is	to	register	an	email	address	then,	upon	subsequent	enrollment,
the	user's	email	address	will	be	encoded	in	the	certificate.	In	Hyperledger
Fabric,	the	certificate	of	the	user	issuing	the	transaction	is	stored	in	the
ledger	along	with	the	committed	transaction.	Anyone	can	decode	the
certificate	and	determine	the	email	address.

Carefully	determine	how	new	entities	will	be	registered	within	a	Fabric	CA,	as	their	digital
certificates	will	end	up	in	the	ledger	when	these	entities	issue	transactions.

Another	important	point	to	consider	is	how	many	enrollments	are	allowed
for	that	user.	Each	enrollment	results	in	a	new	certificate	being	issued	to	the
user.	In	Hyperledger	Fabric,	a	new	user	being	registered	can	be	enrolled	a
finite	number	of	times,	or	can	have	unlimited	enrollments.	Typically,	a	new
entity	being	enrolled	should	not	be	configured	with	unlimited	number	of
enrollments.

It	is	best	to	set	the	maximum	number	of	enrollments	to	1	for	a	new	user.	This	setting	ensures
that	there	is	1-1	correspondence	between	an	entity	and	its	digital	certificate,	thus	making
management	of	entity	revocation	easier.

With	Hyperledger	Fabric	1.1,	it	is	now	possible	to	define	attributes	for
entities	at	the	time	of	their	registration.	These	attributes	are	then	encoded	in
the	X.509	certificate	of	an	entity.

When	used	in	standalone	mode,	upon	successful	registration,	Fabric	CA	will
create	a	unique	password	(if	not	supplied	during	registration).	The	ca-admin	can
then	pass	this	password	to	the	entity	being	registered,	which	will	then	use	it	to
create	a	CSR	and	obtain	a	certificate	through	the	enroll	operation.

Default	Fabric	roles	
To	register	an	entity	in	the	Fabric	CA,	an	entity	should	have	a	set	of	roles.	Fabric
CA	is	configured	with	the	following	default	roles:

hf.Registrar.Roles	=	client,	user,	peer,	validator,	auditor

A	Fabric	CA	can	register	any	entity	that	has	one	of	these	roles:

hf.Registrar.DelegateRoles	=	client,	user,	validator,	auditor

A	Fabric	CA	can	revoke	a	role:

hf.Revoker	=	true

A	Fabric	CA	can	also	register	an	intermediate	CA:

hf.IntermediateCA

To	register	an	identity	in	Fabric	CA,	an	entity	must	have	the	hf.Registrar.	Roles
are	attributed	with	a	comma-separated	list	of	values,	where	one	of	the	values
equals	the	type	of	identity	being	registered.

Secondly,	the	affiliation	of	the	invoker's	identity	must	be	equal	to	or	a	prefix	of
the	affiliation	of	the	identity	being	registered.	For	example,	an	invoker	with	an
affiliation	of	a.b	may	register	an	identity	with	an	affiliation	of	a.b.c,	but	may	not
register	an	identity	with	an	affiliation	of	a.c.

Enroll
The	entity	in	possession	of	an	ID	and	secret	can	then	enroll	itself	with	Fabric
CA.	To	do	so,	it	generates	a	public/private	key	pair,	creates	a	CSR,	and	sends
that	to	Fabric	CA	along	with	the	registered	ID	and	secret	in	the	Authorization
header.	Upon	successful	authentication,	the	server	returns	an	X.509	certificate	to
the	entity	being	enrolled.	The	entity	sending	the	enroll	request	is	responsible	for
managing	the	private	key.	These	private	keys	should	be	stored	in	a	secure
fashion	(such	as	a	hardware	security	module).

Which	crypto	protocols	are	allowed
in	certificate	signing	requests?
The	CSR	can	be	customized	to	generate	X.509	certificates	and	keys	that	support
the	Elliptic	Curve	Digital	Signature	Algorithm	(ECDSA).	The	following	key
sizes	and	algorithms	are	supported:

Size ASN1	OID Signature	Algorithm

256 prime256v1 ecdsa-with-SHA256

384 secp384r1 ecdsa-with-SHA384

521 secp521r1 ecdsa-with-SHA512

Revoking	identities	
Since	Hyperledger	Fabric	is	a	PKI	system,	identities	that	must	be	removed	from
the	system	have	to	be	explicitly	revoked.	This	is	done	through	standard
certificate	revocation	lists	(CRLs).	The	CRLs	need	to	be	synchronized	across
all	organizations	to	ensure	that	everyone	detects	the	revoked	certificate.	The
distribution	of	CRLs	to	other	peers	requires	out	of	band	mechanisms.

Practical	considerations	in	managing
users	in	Fabric	CA
Typically,	an	organization	has	its	own	identity	(LDAP)	server	for	managing	its
employees.	An	organization	may	choose	to	participate	in	one	or	more
Hyperledger	Fabric	networks,	but	only	a	subset	of	its	employees	may	be
onboarded	to	each	network.	The	administrator	of	Fabric	CA	for	each	network
may	choose	to	register	a	subset	of	employees	in	each	network.

Since	an	employee	must	generate	and	manage	a	private	key	to	successfully
participate	in	a	Hyperledger	Fabric	network,	the	responsibility	of	managing	the
private	key	and	its	corresponding	digital	certificate	lies	with	the	employee	of	an
organization.	Managing	private	keys	and	digital	certificates	is	non-trivial,	and
this	can	place	an	undue	burden	on	an	employee	and	may	lead	to	inadvertent	key
exposures	by	the	employee.	Since	an	employee	needs	to	remember	their
organization	issued	credentials	(e.g.,	username	and	password)	to	log	on	to	the
organization	systems,	an	organization	can	choose	to	manage	the	private	keys	and
certificates	on	behalf	of	its	employees	that	participate	in	one	or	more
Hyperledger	Fabric	networks.	Depending	on	the	industry,	the	private	keys	may
be	stored	in	hardware	security	modules,	which	will	make	it	infeasible	to	tamper
with	the	keys.	The	precise	configuration	of	hardware	security	modules	is	beyond
the	scope	of	this	chapter.

Chaincode	security
In	Fabric,	smart	contracts,	also	known	as	chaincode,	can	be	written	in	Go	or
JavaScript.	The	chaincodes	must	be	installed	on	a	peer	and	then	explicitly
initiated.	When	initiated,	each	code	runs	in	a	separate	Docker	container.	The
previous	versions	of	chaincode	also	run	in	separate	Docker	containers.

The	Docker	container	running	the	chaincode	has	access	to	the	virtual	network	as
well	as	the	entire	networking	stack.	If	care	is	not	taken	in	carefully	reviewing	the
chaincode	before	it	gets	installed	on	the	peer,	and	isolating	the	network	access
for	that	chaincode,	it	could	result	in	a	malicious	or	misconfigured	node	probing
or	attaching	the	peer	attached	to	the	same	virtual	network.

An	operator	can	configure	a	policy	to	disable	all	outgoing	or	incoming	network	traffic	on	the
chaincode	Docker	containers,	except	white-listed	nodes.

How	is	chaincode	shared	with	other
endorsing	peers?
Organizations	must	establish	a	process	for	sharing	chaincode	with	other	other
organizations	participating	in	a	Hyperledger	Fabric	network.	Since	the	chaincode
must	be	installed	on	all	endorsing	peers,	it	is	necessary	to	ensure	the	integrity	of
the	chaincode	through	cryptographic	mechanisms	while	sharing	it	with	other
peers.	Please	refer	to	Chapter	8,	Agility	in	a	Blockchain	Network,	for	more	details
on	the	approach	to	share	the	chaincode	This	issue	was	also	highlighted	in	the
security	assessment	of	Hyperledger	Fabric	conducted	by	Nettitude		https://wiki.hy
perledger.org/_media/security/technical_report_linux_foundation_fabric_august_2017_v1.1.pd

f

https://wiki.hyperledger.org/_media/security/technical_report_linux_foundation_fabric_august_2017_v1.1.pdf

Who	can	install	chaincode?
To	install	chaincode	on	a	peer,	an	entity's	certificate	must	be	installed	on	the
node	(stored	in	the	local	MSP)	of	the	peer.	Since	installing	chaincode	is	a	highly
privileged	operation,	care	should	be	taken	that	only	entities	with	administrative
capabilities	have	the	ability	to	perform	this	operation.

Chaincode	encryption
An	entity	can	choose	to	encrypt	the	key/value	pairs	by	using	an	AES	encryption
key	at	the	time	of	chaincode	invocation	(https://github.com/hyperledger/fabric/tree/m
aster/examples/chaincode/go/enccc_example).	The	encryption	key	is	passed	to	the
chaincode,	which	then	encrypts	the	values	before	sending	them	in	a	proposal.
The	entities	that	need	to	decrypt	the	value	(for	example,	to	endorse	a	transaction)
must	be	in	possession	of	a	key.	It	is	expected	that	such	encryption	keys	are	then
shared	with	other	peers	in	an	out-of-band	manner.

https://github.com/hyperledger/fabric/tree/master/examples/chaincode/go/enccc_example

Attribute-based	access	control
As	you	may	remember	from	Chapter	4,	Designing	a	Data	and	Transaction	Model
with	Golang,	one	of	the	new	features	added	with	Hyperledger	1.1	is	attribute-
based	access	control.	At	the	time	of	registering	an	entity,	attributes	can	be
specified	for	an	entity,	which	then	are	added	to	the	X.509	certificate	upon
enrollment.	Examples	of	attributes	include	a	role	name	such	as	an	"auditor"	that
is	agreed	upon	by	the	organizations	participating	in	the	network.	When
chaincode	is	executed,	it	can	check	if	an	identity	has	certain	attributes	before	the
invoke	or	query	operation.	At	a	simple	level,	this	allows	application-level
attributes	to	be	passed	down	into	chaincode	through	a	X.509	certificate.

Pros	and	cons	of	attribute-based
access	control
Encoding	attributes	in	certificates	has	its	own	set	of	pros	and	cons.	On	one	hand,
all	the	information	associated	with	an	identity	is	encoded	in	the	certificate,	thus
decisions	can	be	made	based	on	attributes.	On	the	other	hand,	if	an	attribute	has
to	be	updated,	for	example,	a	user	moves	to	a	different	department,	the	existing
certificate	must	be	revoked,	and	a	new	certificate	has	to	be	issued	with	a	new	set
of	attributes.

Common	threats	and	how
Hyperledger	Fabric	mitigates	them	
Hyperledger	Fabric	provides	protection	against	some	of	the	most	common
security	threats,	and	assumes	a	shared	responsibility	model	for	addressing	others.
In	the	following	table,	we	will	summarize	the	most	common	security	threats,
whether	Hyperledger	Fabric	addresses	them	and	how	or	whether	it	is	the
responsibility	of	a	node/network	operator	to	address	them:

Threat Description Hyperledger
Fabric

Network/Node
Operator

Spoofing

Use	of	a
token	or
other
credential	to
pretend	to	be
an	authorized
user,	or
compromise
a	user's
private	key.

Fabric	certificate
authority
generates	X.509
certificates	for	its
members.

Manage	certificate
revocation	list
distribution	among
network	participants	to
ensure	that	revoked
members	can	no
longer	access	the
system.

Tampering

Modify
information
(for	example,
an	entry	in
the	database).

Use	of
cryptographic
measures
(SHA256,
ECDSA)	make
tampering
infeasible.

Derived	from	Fabric.

Repudiation

An	entity
cannot	deny
who	did
what.

Tracks	who	did
what	using	digital
signatures.

Derived	from	Fabric.

Replay
attacks

Replay	the
transactions
to	corrupt	the
ledger.

Hyperledger
Fabric	uses
read/write	sets	to
validate	the
transaction.	A
replay	of
transactions	will
fail	due	to	an
invalid	read	set.

Derived	from	Fabric.

Information
disclosure

Data	exposed
through
intentional
breach	or
accidental
exposure.

Hyperledger
Fabric	provides
support	for	using
TLSv1.2	for	in-
transit	encryption.
It	does	not
encrypt	ledger
data	at	rest	(the
operator's
responsibility).

Information	about
all	peers	in	the
system	and	their
transactions	is
exposed	to	the
ordering	service.

It	is	the	operator's
responsibility	to
prevent	information
disclosure	by
following	information
security	best	practices
as	well	as	at-rest
encryption.

Denial	of
service

Makes	it
difficult	for
legitimate
users	to
access	the
system.

It	is	the	operator's
responsibility.

It	is	the	operator's
responsibility	to
prevent	denial	of
service	to	the	system.

Elevation	of
Privileges

Gain	high
level	access
to	the
application.

Issued	identities
cannot	upgrade
their	access	(for
example,	create
an	identity)
without	manual
review	of	access.

Hyperledger	Fabric
runs	chaincode	in
Docker	containers.	It
is	the	responsibility	of
the	network/node
operator	to	limit	access
and	run	chaincode
containers	with
appropriate
restrictions.

Ransomware

Using
cryptographic
or	other
means	to
prevent
access	to	data
on	the	file
system.

	

It	is	the	operator's
responsibility.

It	is	the	operator's
responsibility	to
ensure	that
ransomware	cannot
prevent	access	to	a
node's	ledger.

Transaction	privacy	in	Hyperledger
Fabric
One	of	the	main	design	considerations	for	Hyperledger	Fabric	is	to	provide
privacy	and	confidentiality	of	transactions.	Hyperledger	Fabric	provides	a
number	of	knobs	to	achieve	these	goals.

Channels
A	Hyperledger	Fabric	node	that	only	intends	to	share	data	with	a	subset	of	nodes
in	the	network	can	do	so	through	channels.	In	these	cases,	only	peers	that
participate	in	the	channel	can	store	transaction	data;	the	peers	that	are	not	part	of
the	channel	do	not	have	visibility	into	the	transaction	data,	and	thus	cannot	store
it.	However,	this	data	is	exposed	to	the	ordering	service.	A	robust	Channel
design		will	address	the	isolation,	data	privacy	and	confidentiality	between
participants	and	controlled/permissioned	access	with	robust	audit	capability.

Private	data
Peers	in	a	channel	can	choose	to	determine	which	other	peers	they	will	share
their	data	with.	The	private	transaction	data	is	passed	peer-to-peer	between	the
peers,	while	only	the	hashes	of	the	transaction	data	are	broadcasted	to	the
ordering	services	and	to	peers	with	whom	this	data	is	not	shared	with.

Encrypting	transaction	data
Peers	can	also	choose	to	encrypt	the	transaction	data	before	sending	it	for
endorsements.	However,	it	may	be	necessary	for	peers	endorsing	the	transaction
to	view	the	data.	An	out-of-band	mechanism	must	be	used	to	exchange
encryption	keys	between	such	peers.

Hyperledger	Fabric	and	Quantum
Computing
Hyperledger	Fabric	uses	elliptic	curve	cryptography	for	digitally	signing	that
transactions.	The	elliptic	curve	cryptography	relies	on	mathematical	techniques
which	can	be	sped	up	using	quantum	computing	(https://en.wikipedia.org/wiki/Post-
quantum_cryptography).	However,	Hyperledger	Fabric	provides	a	pluggable
cryptographic	provider,	which	allows	replacing	these	algorithms	for	digital
signatures	with	others.	Moreover,	per	the	director	of	Information	Technology
Lab	at	NIST,	the	impact	of	quantum	computing	on	the	security	of	blockchain
systems	is	at	least	15	to	30	years	from	becoming	a	reality	(https://www.coindesk.com/
dc-blockchain-hearing-sees-call-for-congressional-commission/).

https://en.wikipedia.org/wiki/Post-quantum_cryptography
https://www.coindesk.com/dc-blockchain-hearing-sees-call-for-congressional-commission/

General	data	protection	regulation
(GDPR)	considerations
General	Data	Protection	Regulation	(GDPR)	(https://gdpr-info.eu/)	is	an	EU
law	that	defines	how	personal	data	is	acquired,	processed,	and	ultimately	erased
from	a	computing	system.	The	definition	of	personal	data	in	GDPR	is	quite
broad—examples	include	name,	email	address,	and	IP	address.

Blockchain,	by	design,	creates	an	immutable,	permanent,	and	replicated	record
of	the	data.	A	blockchain	network	based	on	Hyperledger	Fabric	will	obviously
encompass	these	three	properties.	Thus	storing	personal	data	on	a	blockchain
network	which	cannot	be	deleted	or	modified	can	be	challenging	from	the
perspective	of	GDPR.	Similarly,	it	is	important	to	know	who	that	personal	data	is
shared	with.

The	channel	and	the	channel	private	data	feature	of	Hyperledger	Fabric	provides
a	mechanism	for	determining	the	entities	with	which	data	is	shared.	In	the	case
of	channel	private	data,	the	data	is	never	stored	on	a	blockchain,	but	its
cryptographic	hashes	are	stored	on	the	chain.	Though	a	governance	process,
peers	can	determine	the	other	peers	to	share	this	data	with.	The	channel	private
data	feature	in	Hyperledger	Fabric	can	potentially	provide	a	mechanism	to	store
personal	data	off	the	chain,	determining	who	this	data	is	shared	with,	while
maintaining	the	integrity	of	this	data	through	cryptographic	hashes	stored	in	the
blockchain.

Hyperledger	Fabric	also	stores	the	X.509	certificate	of	the	entity	creating	the
transaction	in	the	digital	ledger.	These	X.509	certificates	can	contain	personal
data.	With	version	1.1,	Hyperledger	Fabric	provides	a	mechanism	to	prove	the
identity	based	on	zero	knowledge	proofs,	while	hiding	the	actual	value	of	the
attribute.	These	zero-knowledge	proof-based	credentials	are	then	stored	in	the
ledger	in	lieu	of	a	traditional	X.509	certificate	and	can	potentially	help	towards
GDPR	compliance.

https://gdpr-info.eu/

Summary
In	this	chapter,	we	first	covered	design	goals	of	Hyperledger	Fabric	that	are	tied
to	security.	All	the	sets	of	points	which	were	described	are	considered	to	keep
Fabric	security	in	mind.	We	briefly	studied	the	Hyperledger	Fabric	Security	and
understood	how	strong	identities	are	at	the	heart	of	Fabric	security.	We	also	took
a	look	at	chaincode	security.	

Hyperledger,	by	itself,	is	adept	at	handling	threats.	We	dove	into	the	common
Hyperledger	security	threats	and	how	Fabric	mitigates	them.	

We	also	briefly	looked	at	the	impact	of	quantum	computing	on	Hyperledger
Fabric.

We	ended	our	discussion	with	regulation	considerations.	In	the	final	chapter,	we
will	be	looking	at	the	next	steps	in	Hyperledger	and	where	it	is	heading	in	the
future.	

The	Future	of	Blockchain	and	the
Challenges	Ahead
We,	as	its	authors,	certainly	hope	that	this	book	has	been	an	interesting,
informative,	and	educational	journey	bringing	forth	not	only	the	Hyperledger
centric	landscape	for	blockchain	technology	projects	but	also	an	overall	business
perspective	that	explains	the	challenges	and	adoption	patterns	that	follow.	This
has	been	an	interesting	project	for	all	of	us,	given	the	rapid	changes	of	pace	and
evolution	in	the	blockchain	technology	landscape	and	Hyperledger	frameworks
and	tools.	We	have	attempted	to	ensure	that	the	content	not	only	provides	a	basis
for	a	strong	foundation	but	also	provides	deeper	insights	into	some	of	the	core
elements	of	blockchain	business	network	solution	design.	As	active	members	of
the	blockchain	technical	community,	technology,	and	thought	leaders,	we	all
believe	that	we	still	have	a	long	way	to	go	with	regards	to	solving	some	complex
issues	such	as	a	privacy,	confidentiality,	scalability,	and	network	centric
approach	to	code	and	infrastructure	management	leading	to	an	economically
viable	solution	with	predictable	transaction	costs.	This,	in	our	opinion,	is	an
important	consideration	as	the	business	model	that	run	the	business	network
depends	on	the	cost	and	predictability	of	network	processing	regarding
transactions.

Looking	ahead	and	beyond	the	scope	and	context	of	the	topics	covered	in	this
book,	it	is	vital	to	view	the	gap	between	today's	centralized	managed	world	and	a
complete	decentralization	of	every	aspect	of	business	transaction	as	a	spectrum.
The	path	to	complete	decentralization	and	achieving	the	full	promise	of	the
blockchain	is	not	an	easy	one.	The	transformational	projects	undertaken	by
industry	leaders	and	industry	consortiums	are	to	be	viewed	as	an	effort	to
understand	the	technology,	trust,	and	transactions	risks.	This	is	done	prior	to
completely	transitioning	to	the	decentralized	world	most,	which	is	often
professed	by	the	industry	challengers	or	startup	entities.	The	spectrum	itself	is
interesting	and	innovation	is	incubating	on	both	sides	of	the	camp.	It	is	vital	to
understand	industry-specific	innovation	and	adoption	patterns,	as	it	may	indicate
the	readiness	for	production	grade	blockchain-powered	business	networks.

Each	chapter	in	this	book	has	been	carefully	chosen	to	ensure	that	the	readers	are
well-equipped	to	consume	the	right	content	at	the	right	depth.	Yet,	they	are	to
meaningfully	address	the	broader	level	of	discussion	and	implementation	details
one	needs	to	have	to	address	the	blockchain-based	business	and	technology
design	for	projects	beyond	the	proof	of	concept	(PoC).	As	practitioners,	we
have	experienced	first-hand	the	challenges	of	production	readiness	both	from	a
business	understanding	and	technology	acumen	needed	for	a	device	core
blockchain	network	design	that	lays	the	foundation	of	the	multiparty	transaction
network	with	built-in	trust.	The	severe	shortage	of	acumen,	taxonomy,	and
common	design	patterns	has	been	our	primary	motivation	in	expending	our
energy	and	time	in	devising	the	content	of	this	literature.

We	would	like	to	end	this	book	by	providing	a	summary	and	highlights	of	some
vital	topics	and	tie	the	thematic	elements	of	various	chapters	to	ensure	a
cohesive	understanding	of	the	technology	landscape,	HL	projects,	the	divide
between	the	enterprise-driven	blockchain	technologies	which	are	primarily
transformative,	and	the	crypto	asset-driven	world	as	a	challenger	and	disrupt	or
to	every	industry	that	aspires	to	employ	the	blockchain	to	transform	and	reinvent
their	industries.	Regardless	of	the	path,	it	is	vital	for	us	as	a	community	to
understand	the	motivation	and	technology	advancement	of	both	sides	of	the
camp,	as	the	innovation	and	resulting	reinvention	of	business	models	will	lead	to
new	economic	values	aiming	to	change	the	world	as	we	know	it.

Summary	of	key	Hyperledger
projects
We	would	like	to	summarize	and	review	some	key	Hyperledger	projects	(at	the
time	of	writing	this	book)	and	the	complementary	values	they	provide	to
elements	of	blockchain	technical	design.

Hyperledger	framework	–	business
blockchain	technology
Let's	look	at	a	few	of	the	Hyperledger	frameworks:

Hyperledger	Burrow:	A	modular	blockchain	client	with	a	permissioned
smart	contract	interpreter	built	in	to	part	to	the	specification	of	the
Ethereum	Virtual	Machine	(EVM)
Hyperledger	Indy:	A	distributed	ledger,	purpose-built	for	decentralized
identity
Hyperledger	Sawtooth:	This	comes	with	a	novel	consensus	algorithm,
Proof	of	Elapsed	Time	(PoET),	which	targets	large	distributed	validator
populations	with	minimal	resource	consumption
Hyperledger	Iroha:	A	business	blockchain	framework	designed	to	be
simple	and	easy	to	incorporate	into	infrastructural	projects	requiring
distributed	ledger	technology
Hyperledger	Fabric:	This	intended	to	be	a	foundation	for	developing
applications	or	solutions	with	a	modular	architecture,	since	Hyperledger
Fabric	allows	components,	such	as	consensus	and	membership	services,	to
be	plug-and-play

The	Linux	Foundation	Hyperledger	Fabric	has	value-added	enterprise	ready
functionality	such	as:

Permissioned	membership
Performance,	scalability,	and	levels	of	trust
Data	on	a	need-to-know	basis
Rich	queries	over	an	immutable	distributed	ledger
Modular	architecture	supporting	plug-in	components	such	as	security	and
identity
Protection	of	digital	keys	and	sensitive	data

IBM	extends	this	functionality	with	tools	such	as	Hyperledger	Composer	to
manage	membership	with	automation,	scripting,	usage	at	scale	(high	availability
architecture),	new	release	management	when	updates	are	available	from

Hyperledger	with	automation	and	version	control,	and	optimization.

Hyperledger	tools
The	following	is	a	list	of	Hyperledger	tools:

Hyperledger	Cello:	Aims	to	bring	the	on-demand	as-a-service	deployment
model	to	the	blockchain	ecosystem	to	reduce	the	effort	required	for
creating,	managing,	and	terminating	blockchains
Hyperledger	Explorer:	You	can	view,	invoke,	deploy	or	query	blocks,
transactions	and	associated	data,	network	information,	chain	codes	and
transaction	families,	as	well	as	any	other	relevant	information	stored	in	the
ledger
Hyperledger	Quilt:	Offers	interoperability	between	ledger	systems	by
implementing	the	inter-ledger	protocol	(ILP),	which	is	primarily	a
payments	protocol	and	is	designed	to	transfer	value	across	distributed
ledgers	and	non-distributed	ledgers
Hyperledger	Caliper:	A	blockchain	benchmark	tool,	which	allows	users	to
measure	the	performance	of	a	specific	blockchain	implementation	with	a	set
of	predefined	use	cases

Hyperledger	Composer
The	Hyperledger	Composer	is	a	set	of	collaboration	tools	for	building
blockchain	business	networks,	accelerating	the	development	of	smart	contracts,
and	their	deployment	across	a	distributed	ledger.

This	simplifies	how	business	owners	and	developers	who	are	looking	to	create
smart	contracts	and	blockchain	applications	solve	business	problems.	Built	with
JavaScript,	leveraging	modern	tools	including	node.js,	(npm,	CLI,	and	popular
editors),	Composer	offers	business	centric	abstractions	as	well	as	sample	apps
with	easy	to	test	DevOps	processes	to	create	robust	blockchain	solutions	that
drive	alignment	across	business	requirements	with	technical	development.

With	Hyperledger	Composer,	a	business	person	can	work	with	a	developer	to:

Define	the	assets	that	are	exchanged	in	a	blockchain-based	use	case
Define	the	business	rules	around	which	transactions	are	possible
Define	participants,	identity,	and	access	controls	to	determine	which	roles
exist	and	which	roles	can	execute	which	types	of	transactions

Developers	use	Hyperledger	Composer's	modern,	open	toolset	to:

Model	reusable,	core	components	in	a	business	network—assets,
participants,	transaction	logic,	and	access	controls	for	the	business	network,
which	can	then	be	shared	across	multiple	organizations
Generate	JavaScript	and	REST	APIs	based	on	the	business	network
definition	that	can	be	used	to	interact	with	applications
Integrate	legacy	systems,	create	skeleton	applications,	and	run	analytics	on
the	blockchain	network
Begin	to	develop	and	test	on	a	web-based	Composer	playground	without
installing	anything,	and	then	move	to	development	on	your	laptop,	testing
your	model,	and	then	deploying	the	business	network	to	a	live	blockchain
instance	of	Hyperledger	Fabric	or	other	blockchain	network

Blockchain	clients	who	adopt	Hyperledger	Composer	experience	the	following
benefits:

Faster	creation	of	blockchain	applications,	eliminating	the	massive	effort
required	to	build	blockchain	applications	from	scratch
Reduced	risk	with	well-tested,	efficient	design	that	aligns	understanding
across	business	and	technical	analysts	and	creates	reusable	assets	based	on
best	practices	developed	over	400+	client	engagements
Greater	flexibility	as	the	higher-level	abstractions	make	it	far	simpler	to
iterate,	including	the	capability	to	connect	them	to	existing	applications	via
APIs

Hyperledger	Composer	includes	the	following	main	components:

	Business	network	archive:	Capturing	the	core	data	in	a	business	network,
including	the	business	model,	transaction	logic	and	access	controls,	the
business	network	archive	packages	these	elements	up	and	deploys	them	to
runtime.
Composer	playground:	This	web-based	tool	allows	developers	to	learn
Hyperledger	Composer,	model	out	their	business	network,	test	that	network,
and	deploy	that	network	to	a	live	instance	of	a	blockchain	network.	The
Composer	playground	offers	a	repository	of	sample	business	networks	that
can	provide	a	base	for	building	your	own	business	network.
REST	API	support	and	integration	capabilities:	A	LoopBack	connector
for	business	networks	has	been	developed	that	exposes	a	running	network
as	a	REST	API	which	can	easily	be	consumed	by	client	applications	and	an
integrate	non-blockchain	applications.

The	road	ahead	for	Blockchain
Now	that	we've	recapped	our	journey	so	far,	we	will	present	some	of	the	key
areas	that	we	see	as	challenges	and	an	opportunity	for	the	future	of	blockchain
solutions.

	

Addressing	the	divide	–	the	enterprise
blockchain	and	crypto	asset-driven
ecosystem
There's	been	a	significant	divide	between	the	world	of	crypto	assets	and	initial
coin	offerings	(ICOs)	on	the	one	hand,	and	the	world	of	regulated,	conventional
business	on	the	other—the	latter	being	led	by	the	cooperative	effort	of	financial
institutions	and	banks	to	improve	operational	efficiency	and	so	on.	Both	sides,
however,	have	taken	advantage	of	the	benefits	of	blockchain	to	boost	their
market	potential	and	further	their	goals.

The	blockchain	ecosystem—motivated	by	technological	innovation,	disruption,
and	newfangled	models	for	doing	business—has	demonstrated	what	at	times
seems	like	juvenile	behavior	and	occasional	tantrums	as	it	challenges	the	status
quo.	On	both	sides	of	the	divide,	this	defiant	behavior	can	be	observed.	On	the
former	side,	bitcoin	and	other	crypto	assets	have	dramatically	grown	in	value
and	ICOs	have	challenged	traditional	regulatory	frameworks	for	fundraising.	On
the	other,	enterprises	have	introduced	change	in	the	areas	of	settlement,
interbank	transfers,	digital	transparency,	dissemination	of	information	in	a
symmetrical	fashion	in	supply	chains,	ways	of	generating	trust	between	IoT
devices,	and	so	on.	There	are	certainly	differences	on	the	two	sides	of	the	divide,
but	there's	a	common	theme	that	blockchain	isn't	going	anywhere	and	will
continue	to	bring	about	transformation	in	various	industries	as	it	matures.
Blockchain	will	uphold	its	promise	to	deliver	greater	efficiency	and	cost	savings.

With	the	notion	of	permissionless	blockchain,	there	is	an	outright	rejection	of
convention,	and	in	the	permissionless	world,	being	able	to	accelerate	innovation
is	a	top	priority—whether	through	new	business	design	or	technology.	On	the
other	side	are	the	conventional	industries	that	are	trying	to	adopt	blockchain
technology	either	to	keep	up	with	the	change	they	see	around	them	or	to
transform	their	industry	from	within.	Wherever	an	organization	falls	across	this
divide,	the	tenets	of	blockchain	remain	foundational,	and	an	economic	model	for
blockchain	will	help	ensure	its	success.

With	crypto	assets	and	ICOs—the	disruptive	side	of	the	blockchain	divide—
there's	a	strong	inclination	to	invest	in	technology	and	talent	and	leverage
synergies	in	the	marketplace	via	incentive	economics	to	facilitate	the	desired
disruption	and	innovation.	Tokenomics,	for	example,	describes	a	system	of
cryptocurrency,	a	way	of	generating	value	in	an	ICO	network.	The	unit	of	value
is	in	a	co-created,	self-governing	network,	and	all	participating	parties	can	use	it
to	their	benefit.

ICOs	are	largely	funded	by	such	crypto-assets	(which	have	now	achieved	a
market	share	of	$0.5	trillion).	They	defy	traditional	approaches	to	fundraising
(through	crowdfunding,	for	example).	One	of	the	more	notable	aspects	of
disruption	brought	by	ICOs	is	an	effort	to	distinguish	security	from	a	utility	coin.
The	model	they	are	building	emphasizes	concepts	such	as	decentralization	and
open	governance,	transparency,	innovation,	and	so	on.	Thus,	ICOs	help	pave	the
way	to	the	future	with	crypto	assets,	despite	some	initial	ups	and	downs.	They
demonstrate	the	potential	value	defined	by	a	network	that	empowers	innovation.

On	the	side	of	conventional	industries	and	enterprises,	the	emphasis	has	been
different.	There's	more	focus	on	comprehending	the	new	technology	and	how	it
might	transform	businesses	through	changing	business	ecosystems	and
networks,	affecting	regulation	and	compliance	issues,	and	addressing	privacy
and	confidentiality	concerns.	Enterprises	are	interested	in	quickly	discovering
use	cases	that	will	show	results	with	the	technology;	however,	most	businesses
remain	focused	on	an	existing	business	model	and	growth	plans,	and	therefore
many	early	projects	haven't	emphasized	the	blockchain	tenets.	Moreover,
enterprises	are	highly	concerned	with	regulatory	compliance	and	are	therefore
less	in	lined	toward	disruptive	models	that	could	negatively	impact	current
business	operations.

In	conventional	industries,	there's	an	appeal	to	aspects	such	as	symmetric
dissemination	of	information,	improving	the	efficiency	of	workflows	and
business	processes,	and	control	of	transactional	data,	which	blockchain	can
facilitate.	But	there's	a	learning	curve,	and	adoption	is	slower	on	this	side	of	the
divide.	We've	learned	that	enterprise	blockchain	design	needs	to	take	issues	such
as	confidentiality,	privacy,	scalability,	and	performance	seriously.	For	enterprise
blockchain	networks,	these	issues	can	significantly	impact	cost	and	should
therefore	be	central	to	network	design.	Ultimately,	planning	for	blockchain
implementations	in	conventional	industries	has	helped	inspire	blockchain

innovation	to	address	these	challenges.	Organizations	that	see	the	promise	of
blockchain	are	bringing	the	best	talent	to	bear	on	these	issues	because	it	is	all
part	of	an	agenda	for	progress.

The	conventional,	regulated	enterprises	we've	been	talking	about	are	in
permissioned	networks,	as	opposed	to	permissionless	ones.	These	permissioned
networks	will	need	to	continue	to	uncover	incentives	to	inspire	other
organizations	to	join	them.	Tokenomics,	which	work	in	the	crypto	asset/ICO
world,	won't	work	for	all	conventional	businesses	for	various	reasons,	so	they'll
have	to	find	another	business	model	to	demonstrate	value	creation,	distribution,
and	sharing	within	the	network,	while	also	facilitating	innovation	and
modernization.

The	last	two	years	of	blockchain,	2016-2017,	emphasized	disruption	and
involved	a	lot	of	investment	and	education	around	the	technology,	as	well	as
designing	appropriate	business	models	for	implementing	it.	Now,	2018
blockchain	is	starting	to	come	into	maturity	and	industries	should	start	to	see	the
benefits	it	promised:	a	trust-based	system	that	boosts	efficiency.	From	the	start,
blockchain	was	intended	to	bring	about	greater	efficiency	in	the	marketplace
through	disintermediation,	a	shared	network	based	on	trust	and	transparency.
Now	is	a	great	time	to	revisit	the	basics—those	fundamentals	of	blockchain—
trade,	trust,	and	ownership.	These	fundamentals	remain	essential	to	optimizing
blockchain	engagements,	and	I've	seen	this	repeatedly	in	my	work	with
organizations	all	around	the	world.	We	have	to	remain	alert	to	issues	surrounding
digital	identity	and	assets,	tokenization,	settlement,	ownership	definitions	and
verification,	governance,	and	so	forth—the	fundamentals	outlined	in	this	chapter.
Staying	aligned	to	these	fundamentals	is	how	we	can	safeguard	robust
blockchain	networks	that	not	only	prevent	fraud	but	inspire	confidence	in
financial	systems	in	the	digital	era.

Interoperability	–	understanding
business	service	integration
We	have	mentioned	that	blockchain	promises	the	value	of	multiparty	networks
and	addresses	the	issues	of	time	and	trust	by	collapsing	and	flattening	the
individual	business	processes	to	single	processes	with	management	enabled	by
constructs	such	as	smart	contracts,	transactional	finality,	and	channels	and
ledgers,	which	are	the	records	of	transaction	finality.	We	have	also	seen	that,	due
to	various	reasons	such	as	industry-driven	regional	and	the	contextual	network,	it
may	emerge	that	we	will	need	to	be	connected	not	only	to	flatten	the	network
wide	business	process	but	to	simply	address	the	movement	of	value	across	the
network.

Furthermore,	these	networks	may	not	necessarily	be	on	a	homogenous
blockchain	technology	platform	and	may	include	other	frameworks	such	as
Ethereum,	Corda,	and	so	on.	To	add	to	this	complexity,	there	are	existing
business	systems	that	the	enterprise	manages	for	the	sake	of	business	analysis,
reporting,	regulatory	and	compliance	systems,	and	so	on.	It	would	be	cost
prohibitive	for	any	enterprise	to	replace	these	(legacy)	systems	in	order	to	adopt
and	join	blockchain	powered	networks.	These	emerging	paradigms	lead	to	two
essential	challenges	that	an:

Enterprises:	Ensuring	seamless	and	meaningful	integration	into	existing
business	systems
Business	networks:	Keeping	up	with	technology	innovation	and
heterogeneity	in	the	technology	stack	(and	resulting	trust	systems)

These	challenges	must	be	addressed	to	ensure	not	only	interoperability	within
the	individual	enterprise	but	also	that	the	business	network	is	interoperable	with
other	contextual	networks.	This	is	an	area	that	all	of	us	and	the	community	as	a
whole	need	to	focus	on	and	address	at	a	protocol	level	as	it	is	an	adoption
imperative	for	blockchain	network	success.

Scalability	and	economic	viability	of
the	blockchain	solution	
The	focus	on	scalability	and	economic	viability	of	the	blockchain	solution	is	an
important	one	as	it	addresses	the	longevity	of	the	solution.	We	have	already
alluded	to	the	fact	that	business	design	is	reliant	on	cost	predictability	of
transaction	processing	as	it	is	a	cost	component	and	a	factor	in	the	overall	value
of	services	provided	on	the	network.	Besides,	for	any	system,	especially	a
transaction	system,	to	be	ubiquitous	and	be	adopted	at	global	scale,	speed	and
costs	are	two	factors	that	simply	cannot	be	ignored.

The	inverse	relationship	between	the	compute	costs	due	to	security	protocols
(including	encryption,	cryptography,	key	management,	and	so	on)	and	its	impact
on	scalability	(addressing	speed	and	costs	is	an	interesting	paradox	that	presents
an	interesting	challenge	to	us	as	practitioners),	we	have	employed	various
techniques	ranging	from	hardware	centric	approaches	(colocation,	specialize
ASIC	processors,	crypto	accelerator	cards,	hardware	security	modules,	and	so
on)	to	software	design-based	decisions	such	as	a	block	data,	channels,
connection	optimization,	and	so	on.	While	we	have	attempted	to	address	some	of
these	design	principles	and	resulting	choices,	we	believe	that	every	business
network	will	have	unique	business	requirements	and	integration	challenges
requiring	professionals	such	as	yourself	to	put	on	your	thinking	hat	and	apply
what	we	have	learned	from	not	only	foundational	and	fundamental	principles,
but	also	from	the	options	available	and	given	to	us	by	the	platform.	This	includes
the	framework	and	tooling	we	have	discussed	in	the	book.

Staying	engaged	with	the
Hyperledger	blockchain	
In	this	final	section,	we	would	like	the	readers	to	get	engage	with	blockchain's
journey	and	evolution.	There	are	many	ways	to	do	this,	ranging	from	direct
contribution	to	various	open	source	and	Hyperledger	projects	to	steering	your
enterprise	projects	in	the	right	business	direction	and	the	right	application	of	the
blockchain	technology—an	acumen	we	hope	that	the	topics	in	this	book	helps
strengthen.

We,	as	practitioners,	have	do	this	a	few	observations	from	our	engagement	with
clients	and	the	industry	in	general.	These	observations	reflect	not	only	on	the
trajectory	of	innovation	and	subsequent	adoption	but	also	challenges	(and	the
opportunities	head).	These	observations	have	been	summarized	in	the	following
lists.	While	this	summary	does	not	represent	an	exhaustive	list,	it	certainly
captures	the	essence	of	the	state	of	blockchain	evolution	at	the	time	of	writing	of
this	book.

Business-related	observations	are	as	follows:

Despite	currently	lacking	unanimous	definitions	and	standards,	blockchain
technology	is	viewed	as	the	next-generation	technology	that	will	disrupt	the
status	quo	in	the	existing	market	infrastructure	and	change	the	way
financial	institutions	operate	their	day-to-day	businesses.
blockchain	will	first	prosper	in	markets	(and	Eco-systems)	that	are	less
automated,	less	regulated,	and	less	heavily	traded	but	with	high	clearing
and	settlements	risks.
Systems	built	on	top	of	a	permissioned	blockchain	with	a	focus	on	logic
optimization	(enhancing	workflows	and	business	procedures)	are	more
suitable	candidates	for	markets	and	current	ecosystems	adoptions.
Clearing	and	settlement	(the	last	mile	for	most	value-based	transactions)
use	cases	are	often	identified	as	the	most	suitable	for	blockchain
applications	in	markets	and	current	ecosystems	adoptions.	We	are
cautiously	optimistic	about	the	capital	markets'	adoption	of	blockchain
technology	as	we	look	out	for	the	steady	increase	of	IT	spending	in	the

space	of	the	next	5	years.
It	is	unlikely	that	blockchain	technology	will	end	up	replacing	the	entire
markets	and	current	ecosystems	(especially	capital	markets).
Despite	the	lack	of	successful	implementation	in	markets	and	current
ecosystems	to	date,	all	of	the	discussions	about	blockchain's	potential
benefits	have	resulted	in	at	least	one	positive	outcome—increased	public
discussions	on	how	certain	parts	of	capital	markets,	industry	ecosystems,
are	woefully	inefficient	and	how	technology,	such	as	the	blockchain,	and
industry	acknowledgement	and	consensus	around	existing	shortfalls	could
help	key	market	participants	to	make	tough	choices	that	could	create	a	solid
foundation	for	future	growth.
Blockchain	is	creating	opportunities	for	businesses	to	come	together	and
create	value	in	new	ways	by	disintermediating	participants	in	a	business
network,	optimizing	ecosystems,	and	reducing	risk.	Blockchain	intrinsically
supports	a	complete	view	of	provenance	of	transactions	and	assets	being
traded	on	the	network.	These	benefits	are	addressing	complex	challenges
across	all	industries,	including	supply	chain	management,	health
information	exchange,	financial	services,	and	international	trade.

Technology-related	observations	are	as	follows:

With	a	distributed	ledger,	information	can	be	shared	between	any
participants	on	the	network,	eliminating	the	cost	and	complexity	of
involving	intermediary	layers	to	interconnect	participants.	When	such	a
market-level	approach	can	be	achieved,	we	eliminate	the	need	to	implement
the	bilateral	transactions	for	each	of	the	trading	parties.
Technology	standards	and	protocols	are	still	emerging	and	entities	such	as
Linux	Foundation	with	Hyperledger	(for	Technology	standards),
Enterprise	Ethereum	Alliance	(EEA	for	Industry	Standards),	Soverin
Foundation	(for	Identity	standards),	and	several	other	foundations	are
paving	the	way	for	the	community	with	diverse	technology	applications,
ideas,	and	ideologies	to	come	together	to	define	a	model	and	ensure	that	the
evolution	and	subsequent	adoption	is	truly	a	community-driven	process.
There	is	a	divide	between	the	enterprise	adoption	patterns	which	are	largely
permissioned	and	the	crypto	asset	world	which	is	token/crypto-asset	based
and	often	permissionless.
The	underlying	technology	application	however	is	similar	in	both	the
permissioned	and	permissionless	blockchain	networks.
Scalability,	privacy,	and	confidentiality	remain	key	challenges	in	all

blockchain	networks	and	technologies.
Economic	viability—transaction	processing	is	low	and	predictable	costs	is
vital,	and	the	race	is	on	to	reduce	the	computation	overhead	and	cost	with
an	advent	of	new	and	improved	trust	systems	and	consensus	protocols.
There's	a	severe	shortage	of	blockchain	technology	skills	and	talent	leading
to	a	further	focus	on	the	standardization	and	normalization	of	protocol
adoption.

Having	agreed	that	business	and	technical	observation	leads	to	understanding
systemic	issues,	we	need	to	work	together	as	a	community	to	not	only	promote
not	only	the	stability	of	technical	design,	but	also	the	business	adoption	of	the
technology	to	fulfill	the	promise	of	blockchain.	At	the	outset,	we	discussed	the
importance	of	understanding	the	business	domain	and	fully	applying
the	technology	to	address	complex	systems	that	we	are	attempting	to	create.	It	is,
therefore,	vital	to	have	the	right	balance	of	domain	and	technology	skills	as	a
part	of	solution	development	skills	that	are	needed	to	effectively	tackle	the
blockchain	project	challenges.	In	that	spirit,	we,	as	practitioners	have	taken	the
liberty	to	introducing	focus	areas	that	we,	as	a	community	need	to	come	together
to	not	only	make	blockchain	real	for	businesses	but	to	also	realize	the	full
potential	of	the	technology.	The	focus	areas	we	introduce	are	by	no	means	cover
an	exhaustive	list	that	may	be	domain-specific	or	need	additional	technology-
specific	focus,	but	do	represent	foundational	elements	we	will	need	to	focus	on
in	order	to	address	the	business	facets	of	the	digital	transaction	network	we	are
attempting	to	redesign.

Our	focus	should	be	on	developing	the	following	blockchain	domain:

Focus	on	digital	identity	constructs:	Digital	identity	constructs	are	one
side	of	the	coin	that	address	tents	such	as	ownership,	audit,	KYC,	and	other
business	facets	that	are	related	to	a	transaction	with	respect	to	transaction
initiations,	contractual	agreements,	establishing	ownership,	culpability,	and
tracing	for	business	and	co-creation	elements.
Focus	on	digital	asset	and	digital	fiat:	This	is	vital	to	address	the	duality
of	a	transaction	and	ensure	the	linkage	of	a	digitized	asset	to	either	physical
assets	or	de-materialized	assets.	A	digital	fiat	or	a	collateral	backed	digital
asset	is	vital	to	address	the	last	mile	issue	of	settlement.	This	is	true	for
every	transaction	that	involves	a	financial	institution	or	financial
instruments.

Technology	design	for	digital	asset	tokenization:	blockchain	aims	to
build	a	trusted	digital	transaction	network,	and	this	network	is	envisioned	to
create	a	value	network.	Digital	asset	tokenization	is	a	vital	area	to	focus	on
in	order	to	ensure	that	the	digital	manifestation	reflects	the	real-world	assets
movement.	This	focus	areas	will	also	reflect	on	focus	area	2—Focus	on
Digital	Asset	and	Digital	Fiat.	Technology	design	for	digital	asset
tokenization	represents	an	important	technology	design	consideration	as	it
encompasses	various	facets	of	trust,	business	models,	incentive	economics,
and	governance	structure.
Security	design	of	the	enterprise	blockchain	system:	Security	design
becomes	another	vital	technology	design	consideration.	This	is	due	to	the
fact	that	we	are	building	a	digital	transaction	network	with	digital	assets	and
digital	identities	(addressed	in	Focus	areas	1,	2,	and	3).	The	blockchain
business	network	and	network	infrastructure	security	becomes	an	important
consideration	along	with	trust	systems	comprising	crypto	artifacts,
consensus,	transaction	finality,	and	network	communication.	Cybersecurity
concerns	are	heightened	due	to	the	severity	and	consequence	of	network
breaches.	This	is	not	only	to	address	business	functions	such	as	non-
repudiation,	privacy,	and	confidentiality,	but	to	also	to	address	the
foundational	tenets	of	the	trust	network	we	aspire	to	build.
Devising	appropriate	blockchain	business	models:	Appropriate	business
models	becomes	a	business	design	consideration.	This	focus	area	is	vital	for
economic	viability,	business	growth,	and	the	longevity	of	the	business
network	powered	by	blockchain.	This	focus	area	ensures	the	economics	of
investment,	returns,	membership,	and	derived	benefits	for	an	equitable
participation	by	various	ecosystem	players	to	promote	co-creation	models
and	give	birth	to	new	business	models	and	synergies	that	did	not	exist
before.
Devising	an	appropriate	governance	structure:	Governance	structure
ensures	the	active	and	equitable	participation	from	the	blockchain
ecosystem	and	network	participants.	This	focus	area	is	a	business	design
consideration.	The	root	of	this	focus	area	ranges	from	self-governing
models	(permissionless	networks)	to	consortium	or	business	entity	(JV)
defined	quasi-autonomous	governance	structures.	Governance	structures
are	also	instrumental	in	achieving	business	attributes	such	as	an	audit
requirement,	dispute	resolution,	and	reporting	requirements.

Summary
We	have,	in	crafting	the	content	design	for	this	book,	focused	on	presenting
well-balanced	and	relevant	content	to	ensure	a	deeper	understanding	of	systemic
issues	we	are	trying	to	address	with	blockchain.	The	content	not	only	focuses	on
delving	into	the	technology	but	also	on	the	relationship	with,	and	relevance
to,the	business	network	and	ecosystem	we	are	attempting	to	transform	and
disrupt.

We	not	only	hope	that	our	readers	benefit	from	the	collective	experience	of	the
authors	who	have	made	tremendous	contributions	to	the	content	with	their
expertise,	knowledge,	experience,	and	preceding	all	personal	commitment	in
putting	this	content	together,	but	also	hope	for	a	continued	dialog	and
progressive	involvement	over	and	beyond	the	topics	covered	in	this	book.

	

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Mastering	Blockchain	-	Second	Edition
Imran	Bashir

ISBN:	978-1-78883-904-4

Master	the	theoretical	and	technical	foundations	of	the	blockchain
technology
Understand	the	concept	of	decentralization,	its	impact,	and	its	relationship
with	blockchain	technology
Master	how	cryptography	is	used	to	secure	data	-	with	practical	examples
Grasp	the	inner	workings	of	blockchain	and	the	mechanisms	behind	bitcoin
and	alternative	cryptocurrencies
Understand	the	theoretical	foundations	of	smart	contracts
Learn	how	Ethereum	blockchain	works	and	how	to	develop	decentralized
applications	using	Solidity	and	relevant	development	frameworks

Building	Blockchain	Projects

https://www.packtpub.com/big-data-and-business-intelligence/mastering-blockchain-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/building-blockchain-projects

Narayan	Prusty

ISBN:	978-1-78712-214-7

Walk	through	the	basics	of	the	Blockchain	technology
Implement	Blockchain’s	technology	and	its	features,	and	see	what	can	be
achieved	using	them
Build	DApps	using	Solidity	and	Web3.js
Understand	the	geth	command	and	cryptography
Create	Ethereum	wallets
Explore	consortium	blockchain

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	Title Page
	Copyright and Credits
	Hands-On Blockchain with Hyperledger

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Foreword
	Contributors
	About the authors
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Blockchain - Enterprise and Industry Perspective
	Defining the terms – what is a blockchain?
	Four core building blocks of blockchain framworks
	Additional capabilities to consider

	Fundamentals of the secure transaction processing protocol
	Where blockchain technology has been and where it's going
	The great divide
	An economic model for blockchain delivery
	Learning as we go
	The promise of trust and accountability

	Industries putting blockchain technology to work
	Blockchain in the enterprise
	What applications are a good fit?
	How does the enterprise view blockchain?
	Litmus testing to justify the application of blockchain technology
	Integrating a blockchain infrastructure for the whole enterprise

	Enterprise design principles
	Business drivers and evolution
	Ensuring sustainability
	The principles that drive blockchain adoption

	Business considerations for choosing a blockchain framework
	Technology considerations for choosing a blockchain framework
	Identity management
	Scalability
	Enterprise security
	Development tooling
	Crypto-economic models
	Decentralization with systemic governance
	Enterprise support
	Use case-driven pluggability choices
	Shared ledger technology
	Consensus
	Crypto algorithms and encryption technology
	Use case-driven pluggable choices

	Enterprise integration and designing for extensibility
	Other considerations
	Consensus, ACID property, and CAP
	CAP
	ACID

	Attestation – SSCs are signed and encrypted
	Use of HSMs

	Summary

	Exploring Hyperledger Fabric
	Building on the foundations of open computing
	Fundamentals of the Hyperledger project
	The Linux Foundation
	Hyperledger
	Open source and open standards

	Hyperledger frameworks, tools, and building blocks
	Hyperledger frameworks
	Hyperledger tools
	The building blocks of blockchain solutions

	Hyperledger Fabric component design
	Principles of Hyperledger design
	CAP Theorem
	Hyperledger Fabric reference architecture
	Hyperledger Fabric runtime architecture
	Strengths and advantages of componentized design

	Hyperledger Fabric – the journey of a sample transaction
	Hyperledger Fabric explored
	Components in a blockchain network
	Developer interaction

	Understanding governance in business networks powered by blockchain
	Governance structure and landscape
	Information technology governance
	Blockchain network governance
	Business network governance

	Summary

	Setting the Stage with a Business Scenario
	Trading and letter of credit
	The importance of trust in facilitating trade
	The letter of credit process today

	Business scenario and use case
	Overview
	Real-world processes
	Simplified and modified processes
	Terms used in trade finance and logistics
	Shared process workflow
	Shared assets and data
	Participants' roles and capabilities
	Benefits of blockchain applications over current real-world processes

	Setting up the development environment
	Designing a network
	Installing prerequisites
	Forking and cloning the trade-finance-logistics repository
	Creating and running a network configuration
	Preparing the network
	Generating network cryptographic material
	Generating channel artifacts
	Generating the configuration in one operation
	Composing a sample trade network

	Network components' configuration files
	Launching a sample trade network
	Summary

	Designing a Data and Transaction Model with Golang
	Starting the chaincode development
	Compiling and running chaincode
	Installing and instantiating chaincode
	Invoking chaincode

	Creating a chaincode
	The chaincode interface
	Setting up the chaincode file
	The Invoke method

	Access control
	ABAC
	Registering a user
	Enrolling a user
	Retrieving user identities and attributes in chaincode

	Implementing chaincode functions
	Defining chaincode assets
	Coding chaincode functions
	Creating an asset
	Reading and modifying an asset
	Main function

	Testing chaincode
	SHIM mocking
	Testing the Init method
	Testing the Invoke method
	Running tests

	Chaincode design topics
	Composite keys
	Range queries
	State queries and CouchDB
	Indexes
	ReadSet and WriteSet
	Multiversion concurrency control

	Logging output
	Configuration
	Logging API
	SHIM logging levels
	Stdout and stderr
	Additional SHIM API functions

	Summary

	Exposing Network Assets and Transactions
	Building a complete application
	The nature of a Hyperledger Fabric application
	Application and transaction stages
	Application model and architecture

	Building the application
	Middleware – wrapping and driving the chaincode
	Installation of tools and dependencies
	Prerequisites for creating and running the middleware
	Installation of dependencies

	Creating and running the middleware
	Network configuration
	Endorsement policy
	User records
	Client registration and enrollment
	Creating a channel
	Joining a channel
	Installation of chaincode
	Instantiation of chaincode
	Invoking the chaincode
	Querying the chaincode
	Completing the loop – subscribing to blockchain events
	Putting it all together

	User application – exporting the service and API
	Applications
	User and session management
	Designing an API
	Creating and launching a service
	User and session management
	Network administration
	Exercising the application
	User/client interaction modes

	Testing the Middleware and Application

	Integration with existing systems and processes
	Design considerations
	Decentralization
	Process alignment
	Message affinity

	Service discovery
	Identity mapping
	Integration design pattern
	Enterprise system integration
	Integrating with an existing system of record
	Integrating with an operational data store
	Microservice and event-driven architecture

	Considering reliability, availability, and serviceability
	Reliability
	Availability
	Serviceability

	Summary

	Business Networks
	A busy world of purposeful activity
	Why a language for business networks?

	Defining business networks
	A deeper idea

	Introducing participants
	Types of participant
	Individual participants
	Organizational participants
	System or device participants

	Participants are agents
	Participants and identity

	Introducing assets
	Assets flow between participants
	Tangible and intangible assets
	The structure of assets
	Ownership is a special relationship
	Asset life cycles
	Describing asset's life cycles in detail with transactions

	Introducing transactions
	Change as a fundamental concept
	Transaction definition and instance
	Implicit and explicit transactions
	The importance of contracts
	Signatures
	Smart contracts for multi-party transaction processing
	Digital transaction processing
	Initiating transactions
	Transaction history
	Transaction streams
	Separating transactions into different business networks
	Transaction history and asset states
	A business network as a history of transactions
	Regulators and business networks

	Discussing events from the perspective of designing a business network using Composer
	A universal concept
	Messages carry event notifications
	An example to illustrate event structure
	Events and transactions
	External versus explicit events
	Events cause participants to act
	Loosely coupled design
	The utility of events

	Implementing a business network
	The importance of de-materialization
	Blockchain benefits for B2B and EDI
	Participants that interact with the blockchain
	Accessing the business network with APIs
	A 3-tier systems architecture
	Hyperledger Fabric and Hyperledger Composer

	Summary

	A Business Network Example
	The letter of credit sample
	Installing the sample
	Running the sample
	Step 1 – preparing to request a letter of credit
	Step 2 – requesting a letter of credit
	Step 3 – importing bank approval
	Step 4 – exporting bank approval
	Step 5 – letter received by exporter
	Step 6 – shipment
	Step 7 – goods received
	Step 8 – payment
	Step 9 – closing the letter
	Step 10 – Bob receives payment

	Recapping the process

	Analyzing the letter of credit process
	The Playground
	Viewing the business network

	A description of the business network
	The participant descriptions
	The asset descriptions
	The transaction descriptions
	The event descriptions

	A model of the business network
	Namespaces
	Enumerations
	Asset definitions
	Participant definitions
	Concept definitions
	Transaction definitions
	Event definitions

	Examining the live network
	Examining a letter of credit instance
	Examining participant instances
	Examining transaction instances
	Submitting a new transaction to the network
	Understanding how transactions are implemented

	Creating business network APIs
	SWAGGER API definitions
	Querying the network using SWAGGER
	Testing the network from the command line
	Creating a new letter using SWAGGER
	Network cards and wallets
	Access-control lists

	Summary

	Agility in a Blockchain Network
	Defining the promotion process
	Smart contract considerations
	Integration layer considerations
	Promotion process overview

	Configuring a continuous integration pipeline
	Customizing the pipeline process
	Local build
	Configuring Travis CI
	Customizing the pipeline using .travis.yml

	Publishing our smart contract package

	Configuring your Git repository
	Setting the code owners of our smart contract
	Sample content of the CODEOWNERS

	Protecting the master branch
	Configuring Git for commit signing and validation
	Configuring GPG on your local workstation

	Testing the end-to-end process
	Creating a new transaction
	Pushing a commit to the master branch directly
	Submitting a pull request with an unsigned commit

	Adding test cases
	Submitting a pull request with a signed commit
	Adding the mergeAssets unit test

	Releasing the new version

	Updating the network
	Notifying the consortium
	Upgrading the business network
	Downloading a new version
	Updating the business network

	Summary

	Life in a Blockchain Network
	Modifying or upgrading a Hyperledger Fabric application
	Fabric blockchain and application life cycle
	Channel configuration updates
	Prerequisites for adding a new organization to the network
	Generating network cryptographic material
	Generating channel artifacts
	Generating the configuration and network components in one operation
	Launching the network components for the new organization
	Updating the channel configuration
	Adding the new organization to the network

	Smart contract and policy updates
	Modification in chaincode logic
	Dependency upgrades in chaincode
	Ledger resetting
	Endorsement policy update
	Upgrading chaincode and endorsement policy on the trade channel

	Platform upgrades

	System monitoring and performance
	Measurement and analytics
	What should we measure or understand in a Fabric application
	Blockchain applications vis-à-vis traditional transaction processing applications
	Metrics for performance analysis

	Measurement and data collection in a Fabric application
	Collecting health and capacity information
	Profiling containers and applications
	Measuring application performance

	Fabric engineering guidelines for performance
	Platform performance characteristics
	System bottlenecks
	Configuration and tuning
	Ledger data availability and caching
	Redundant committing peer
	Data caching

	Fabric performance measurement and benchmarking

	Summary

	Governance, Necessary Evil of Regulated Industries
	Decentralization and governance
	Exploring the business models
	Blockchain benefits
	Supply chain management
	Healthcare
	Finance – letter of credit

	From benefits to profits
	Network business model
	Founder-led network
	Consortium-based network
	Community-based network
	Hybrid models
	Joint venture
	New corporation

	Role of governance in a business network
	Business domains and processes
	Membership life cycle
	Funding and fees
	Regulation
	Education
	Service life cycle
	Disputes

	Governance structure
	Centralized governance
	Strategic governance
	Operational governance
	Tactical governance

	Decentralized governance

	Governance and the IT solution
	Managed on-boarding

	Summary

	Hyperledger Fabric Security
	Hyperledger Fabric design goals impacting security
	Hyperledger Fabric architecture
	Fabric CA or membership service provider
	Peer
	Smart contract or chaincode
	Ledger
	Private data
	Ordering service

	Network bootstrap and governance – the first step towards security
	Creating the network
	Adding new members
	Deploying and updating chaincode
	Data model

	Strong identities – the key to the security of the Hyperledger Fabric network
	Bootstrapping Fabric CA
	Register
	Default Fabric roles
	Enroll
	Which crypto protocols are allowed in certificate signing requests?

	Revoking identities

	Practical considerations in managing users in Fabric CA

	Chaincode security
	How is chaincode shared with other endorsing peers?
	Who can install chaincode?
	Chaincode encryption
	Attribute-based access control
	Pros and cons of attribute-based access control

	Common threats and how Hyperledger Fabric mitigates them
	Transaction privacy in Hyperledger Fabric
	Channels
	Private data
	Encrypting transaction data

	Hyperledger Fabric and Quantum Computing
	General data protection regulation (GDPR) considerations
	Summary

	The Future of Blockchain and the Challenges Ahead
	Summary of key Hyperledger projects
	Hyperledger framework – business blockchain technology
	Hyperledger tools
	Hyperledger Composer

	The road ahead for Blockchain
	Addressing the divide – the enterprise blockchain and crypto asset-driven ecosystem
	Interoperability – understanding business service integration
	Scalability and economic viability of the blockchain solution

	Staying engaged with the Hyperledger blockchain
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

