
4.1 Introduction to Service-Orientation

4.2 Problems Solved by Service-Orientation

4.3 Challenges Introduced by Service-Orientation

4.4 Additional Considerations

4.5 Effects of Service-Orientation on the Enterprise

4.6 Origins and Influences of Service-Orientation

4.7 Case Study Background

Chapter 4

Service-Orientation

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



H
aving covered some of the basic elements of service-oriented computing, we now

narrow our focus on service-orientation. The next set of sections establish the 

paradigm of service-orientation and explain how it is changing the face of distributed

computing.

4.1 Introduction to Service-Orientation

In the every day world around us, services are and have been commonplace for as long

as civilized history has existed. Any person carrying out a distinct task in support of oth-

ers is providing a service (Figure 4.1). Any group of individuals collectively performing

a task is also demonstrating the delivery of a service. 

Figure 4.1

Three individuals, each capable of providing a distinct

service.

Similarly, an organization that carries out tasks associated with its purpose or business

is also providing a service. As long as the task or function being provided is well-defined

and can be relatively isolated from other associated tasks, it can be distinctly classified

as a service (Figure 4.2). 

Certain baseline requirements exist to enable a group of individual service providers to

collaborate in order to collectively provide a larger service. Figure 4.2, for example, dis-

plays a group of employees that each provide a service for ABC Delivery. Even though

each individual contributes a distinct service, for the company to function effectively, its

staff also needs to have fundamental, common characteristics, such as availability, reli-

ability, and the ability to communicate using the same language. With all of this in place,

these individuals can be composed into a productive working team. Establishing these

types of baseline requirements is a key goal of service-orientation.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.1 Introduction to Service-Orientation 69

Services in Business Automation

In the world of SOA and service-orientation, the term “service” is not generic. It has spe-

cific connotations that relate to a unique combination of design characteristics. When

solution logic is consistently built as services and when services are consistently

designed with these common characteristics, service-orientation is successfully realized

throughout an environment.

For example, one of the primary service design characteristics explored as part of this

study of service-orientation is reusability. A strong emphasis on producing solution

logic in the format of services that are positioned as highly generic and reusable enter-

prise resources gradually transitions an organization to a state where more and more of

its solution logic becomes less dependent on and more agnostic to any one purpose or

business process. Repeatedly fostering this characteristic within services eventually

results in wide-spread reuse potential.

Consistently realizing specific design characteristics requires a set of guiding principles.

This is what the service-orientation design paradigm is all about.

Services Are Collections of Capabilities

When discussing services, it is important to remember that a single service can provide

a collection of capabilities. They are grouped together because they relate to a functional

Figure 4.2

A company that employs these three people can compose

their capabilities to carry out its business.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



context established by the service. The functional context of the service illustrated in 

Figure 4.3, for example, is that of “shipment.” Therefore, this particular service provides

a set of capabilities associated with the processing of shipments.

70 Chapter 4: Service-Orientation

Figure 4.3

Much like a human, an automated service

can provide multiple capabilities.

A service can essentially act as a container of related capabilities. It is comprised of a

body of logic designed to carry out these capabilities and a service contract that

expresses which of its capabilities are made available for public invocation. 

References to service capabilities in this book are specifically focused on those that are

defined in the service contract. For a discussion of how service capabilities are distin-

guished from Web service operations and component methods, see the Principles and

Service Implementation Mediums section in Chapter 5.

Service-Orientation as a Design Paradigm

As established in Chapter 3, a design paradigm is an approach to designing solution

logic. When building distributed solution logic, design approaches revolve around a

software engineering theory known as the separation of concerns. In a nutshell, this the-

ory states that a larger problem is more effectively solved when decomposed into a set

of smaller problems or concerns. This gives us the option of partitioning solution logic

into capabilities, each designed to solve an individual concern. Related capabilities can

be grouped into units of solution logic.

The fundamental benefit to solving problems this way is that a number of the solution

logic units can be designed to solve immediate concerns while still remaining agnostic

to the greater problem. This provides the constant opportunity for us to reutilize the

capabilities within those units to solve other problems as well.

Different design paradigms exist for distributed solution logic. What distinguishes serv-

ice-orientation is the manner in which it carries out the separation of concerns and how

it shapes the individual units of solution logic. Applying service-orientation to a mean-

ingful extent results in solution logic that can be safely classified as “service-oriented”

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.1 Introduction to Service-Orientation 71

and units that qualify as “services.” To understand exactly what that means requires an

appreciation of the strategic goals covered in Chapter 3 combined with knowledge of the

associated design principles documented in Part II. 

For now, let’s briefly introduce each of these principles:

Standardized Service Contract 

Services express their purpose and capabilities via a service contract. The Standardized

Service Contract design principle is perhaps the most fundamental part of service-

orientation in that it essentially requires that specific considerations be taken into

account when designing a service’s public technical interface and assessing the nature

and quantity of content that will be published as part of a service’s official contract.

A great deal of emphasis is placed on specific aspects of contract design, including the

manner in which services express functionality, how data types and data models 

are defined, and how policies are asserted and attached. There is a constant focus on

ensuring that service contracts are both optimized, appropriately granular, and stan-

dardized to ensure that the endpoints established by services are consistent, reliable,

and governable.

Chapter 6 is dedicated to exploring this design principle in detail.

Service Loose Coupling 

Coupling refers to a connection or relationship between two things. A measure of cou-

pling is comparable to a level of dependency. This principle advocates the creation of a

specific type of relationship within and outside of service boundaries, with a constant

emphasis on reducing (“loosening”) dependencies between the service contract, its

implementation, and its service consumers. 

The principle of Service Loose Coupling promotes the independent design and evolu-

tion of a service’s logic and implementation while still guaranteeing baseline interoper-

ability with consumers that have come to rely on the service’s capabilities. There are

numerous types of coupling involved in the design of a service, each of which can

impact the content and granularity of its contract. Achieving the appropriate level of

coupling requires that practical considerations be balanced against various service

design preferences.

Chapter 7 provides an in-depth exploration of this principle and introduces related pat-

terns and concepts.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



Service Abstraction

Abstraction ties into many aspects of service-orientation. On a fundamental level, this

principle emphasizes the need to hide as much of the underlying details of a service as

possible. Doing so directly enables and preserves the previously described loosely cou-

pled relationship. Service Abstraction also plays a significant role in the positioning and

design of service compositions. 

Various forms of meta data come into the picture when assessing appropriate abstrac-

tion levels. The extent of abstraction applied can affect service contract granularity and

can further influence the ultimate cost and effort of governing the service.

Chapter 8 covers several aspects of applying abstraction to different types of service

meta data, along with processes and approaches associated with information hiding.

Service Reusability

Reuse is strongly advocated within service-orientation; so much so, that it becomes a

core part of typical service analysis and design processes, and also forms the basis for

key service models. The advent of mature, non-proprietary service technology has pro-

vided the opportunity to maximize the reuse potential of multi-purpose logic on an

unprecedented level.

The principle of Service Reusability emphasizes the positioning of services as enterprise

resources with agnostic functional contexts. Numerous design considerations are raised

to ensure that individual service capabilities are appropriately defined in relation to an

agnostic service context, and to guarantee that they can facilitate the necessary reuse

requirements.

Variations and levels of reuse and associated agnostic service models are covered in

Chapter 9, along with a study of how commercial product design approaches have 

influenced this principle.

Service Autonomy

For services to carry out their capabilities consistently and reliably, their underlying

solution logic needs to have a significant degree of control over its environment and

resources. The principle of Service Autonomy supports the extent to which other design

principles can be effectively realized in real world production environments by fostering

design characteristics that increase a service’s reliability and behavioral predictability.

72 Chapter 4: Service-Orientation

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.1 Introduction to Service-Orientation 73

This principle raises various issues that pertain to the design of service logic as well as

the service’s actual implementation environment. Isolation levels and service normal-

ization considerations are taken into account to achieve a suitable measure of autonomy,

especially for reusable services that are frequently shared.

Chapter 10 documents the design issues and challenges related to attaining higher 

levels of service autonomy, and further classifies different forms of autonomy and 

highlights associated risks.

Service Statelessness

The management of excessive state information can compromise the availability of a

service and undermine its scalability potential. Services are therefore ideally designed to

remain stateful only when required. Applying the principle of Service Statelessness

requires that measures of realistically attainable statelessness be assessed, based on the

adequacy of the surrounding technology architecture to provide state management del-

egation and deferral options.

Chapter 11 explores the options and impacts of incorporating stateless design charac-

teristics into service architectures.

Service Discoverability

For services to be positioned as IT assets with repeatable ROI they need to be easily iden-

tified and understood when opportunities for reuse present themselves. The service

design therefore needs to take the “communications quality” of the service and its indi-

vidual capabilities into account, regardless of whether a discovery mechanism (such as

a service registry) is an immediate part of the environment. 

The application of this principle, as well as an explanation of how discoverability relates

to interpretability and the overall service discovery process, are covered in Chapter 12.

Service Composability

As the sophistication of service-oriented solutions continues to grow, so does the com-

plexity of underlying service composition configurations. The ability to effectively com-

pose services is a critical requirement for achieving some of the most fundamental goals

of service-oriented computing. 

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



Complex service compositions place demands on service design that need to be antici-

pated to avoid massive retro-fitting efforts. Services are expected to be capable of par-

ticipating as effective composition members, regardless of whether they need to be

immediately enlisted in a composition. The principle of Service Composability

addresses this requirement by ensuring that a variety of considerations are taken into

account.

How the application of this design principle helps prepare services for the world of com-

plex compositions is described in Chapter 13.

Service-Orientation and Interoperability

One item that may appear to be absent from the preceding list is a principle along the

lines of “Services are Interoperable.” The reason this does not exist as a separate principle

is because interoperability is fundamental to every one of the principles just described.

Therefore, in relation to service-oriented computing, stating that services must be inter-

operable is just about as basic as stating that services must exist. Each of the eight prin-

ciples supports or contributes to interoperability in some manner. 

Here are just a few examples:

• Service contracts are standardized to guarantee a baseline measure of interoper-

ability associated with the harmonization of data models.

• Reducing the degree of service coupling fosters interoperability by making indi-

vidual services less dependent on others and therefore more open for invocation

by different service consumers.

• Abstracting details about the service limits all interoperation to the service con-

tract, increasing the long-term consistency of interoperability by allowing underly-

ing service logic to evolve more independently.

• Designing services for reuse implies a high-level of required interoperability

between the service and numerous potential service consumers.

• By raising a service’s individual autonomy, its behavior becomes more consis-

tently predictable, increasing its reuse potential and thereby its attainable level of

interoperability.

• Through an emphasis on stateless design, the availability and scalability of serv-

ices increase, allowing them to interoperate more frequently and reliably.

74 Chapter 4: Service-Orientation

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.2 Problems Solved by Service-Orientation 75

• Service Discoverability simply allows services to be more easily located by those

who want to potentially interoperate with them. 

• Finally, for services to be effectively composable they must be interoperable. The

success of fulfilling composability requirements is often tied directly to the extent

to which services are standardized and cross-service data exchange is optimized.

A fundamental goal of applying service-orientation is for interoperability to become a

natural by-product, ideally to the extent that a level of intrinsic interoperability is estab-

lished as a common and expected service design characteristic. Depending on the archi-

tectural strategy being employed, this extent may or may not be limited to a specific

service inventory.

Of course, as with any other design characteristic, there are levels of interoperability a

service can attain. The ultimate measure is generally determined by the extent to which

service-orientation principles have been consistently and successfully realized (plus, of

course, environmental factors such as the compatibility of wire protocols, the maturity

level of the underlying technology platform, and adherence to technology standards).

NOTE

Increased intrinsic interoperability is one of the key strategic goals associ-

ated with service-oriented computing (as originally established in Chapter

3). For more detailed information about how service-orientation principles

directly support this and other strategic goals, see Chapter 16.

SUMMARY OF KEY POINTS

• The service-orientation paradigm consists of eight distinct design principles,

each of which fosters fundamental design characteristics, such as interoper-

ability. These principles are explored individually in subsequent chapters.

• Interoperability is a natural by-product of applying service-orientation design

principles.

4.2 Problems Solved by Service-Orientation

To best appreciate why service-orientation has emerged and how it is intended to

improve the design of automation systems, we need to compare before and after per-

spectives. By studying some of the common issues that have historically plagued IT, we

can begin to understand the solutions proposed by this design paradigm.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



Life Before Service-Orientation

In the world of business it makes a great deal of sense to deliver solutions capable of

automating the execution of business tasks. Over the course of IT’s history, the majority

of such solutions have been created with a common approach of identifying the business

tasks to be automated, defining their business requirements, and then building the cor-

responding solution logic (Figure 4.4).

76 Chapter 4: Service-Orientation

NOTE

This book fully acknowledges that past design paradigms have advo-

cated similar principles and strategic goals as service-orientation. Several

of these design approaches, in fact, directly inspired or influenced serv-

ice-orientation (as explained further in the Origins and Influences of Ser-

vice-Orientation section of this chapter). The following section is focused

specifically on a comparison with the silo-based design approach

because it has persisted as the most common means by which applica-

tions are delivered.

Figure 4.4

A ratio of one application for each new set of automation requirements has been common.

This has been an accepted and proven approach to achieving tangible business benefits

through the use of technology and has been successful at providing a relatively pre-

dictable return on investment (Figure 4.5). 

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.2 Problems Solved by Service-Orientation 77

The ability to gain any further value from these applications is usually inhibited because

their capabilities are tied to specific business requirements and processes (some of which

will even have a limited lifespan). When new requirements and processes come our

way, we are forced to either make significant changes to what we already have, or we

may need to build a new application altogether. 

In the latter case, although repeatedly building “disposable applications” is not the per-

fect approach, it has proven itself as a legitimate means of automating business. Let’s

explore some of the lessons learned by first focusing on the positive. 

• Solutions can be built efficiently because they only need to be concerned with the

fulfillment of a narrow set of requirements associated with a limited set of busi-

ness processes.

• The business analysis effort involved with defining the process to be automated is

straight forward. Analysts are focused only on one process at a time and therefore

only concern themselves with the business entities and domains associated with

that one process. 

• Solution designs are tactically focused. Although complex and sophisticated

automation solutions are sometimes required, the sole purpose of each is to auto-

mate just one or a specific set of business processes. This predefined functional

scope simplifies the overall solution design as well as the underlying application

architecture.

Figure 4.5

A sample formula for calculating ROI is based on a

predetermined investment with a predictable return.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



• The project delivery lifecycle for each solution is streamlined and relatively pre-

dictable. Although IT projects are notorious for being complex endeavors, riddled

with unforeseen challenges, when the delivery scope is well-defined (and doesn’t

change), the process and execution of the delivery phases have a good chance of

being carried out as expected.

• Building new systems from the ground up allows organizations to take advantage

of the latest technology advancements. The IT marketplace progresses every year

to the extent that we fully expect technology we use to build solution logic today

to be different and better tomorrow. As a result, organizations that repeatedly

build disposable applications can leverage the latest technology innovations with

each new project.

These and other common characteristics of traditional solution delivery provide a good

indication as to why this approach has been so popular. Despite its acceptance, though,

it has become evident that there is still lots of room for improvement.

It Can Be Highly Wasteful

The creation of new solution logic in a given enterprise commonly results in a signifi-

cant amount of redundant functionality (Figure 4.6). The effort and expense required to

construct this logic is therefore also redundant.

78 Chapter 4: Service-Orientation

Figure 4.6

Different applications developed independently can result in significant

amounts of redundant functionality. The applications displayed were delivered

with various levels of solution logic that, in some form, already existed.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.2 Problems Solved by Service-Orientation 79

It’s Not as Efficient as it Appears

Because of the tactical focus on delivering solutions for specific process requirements,

the scope of development projects is highly targeted. Therefore, there is the constant per-

ception that business requirements will be fulfilled at the earliest possible time. How-

ever, by continually building and rebuilding logic that already exists elsewhere, the

process is not as efficient as it could be if the creation of redundant logic could be

avoided (Figure 4.7).

Figure 4.7

Application A was delivered for a specific set of business requirements.

Because a subset of these business requirements had already been ful-

filled elsewhere, Application A’s delivery scope is larger than it has to be.

It Bloats an Enterprise

Each new or extended application adds to the bulk of an IT environment’s system 

inventory (Figure 4.8). The ever-expanding hosting, maintenance, and administration

demands can inflate an IT department in budget, resources, and size to the extent that

IT becomes a significant drain on the overall organization.

Figure 4.8

This simple diagram portrays an enterprise environment containing appli-

cations with redundant functionality. The net effect is a larger enterprise.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



It Can Result in Complex Infrastructures and Convoluted Enterprise Architectures

Having to host numerous applications built from different generations of technologies

and perhaps even different technology platforms often requires that each will impose

unique architectural requirements. The disparity across these “siloed” applications can

lead to a counter-federated environment (Figure 4.9), making it challenging to plan the

evolution of an enterprise and scale its infrastructure in response to that evolution.

80 Chapter 4: Service-Orientation

Figure 4.9

Different application environments within the same enterprise can introduce incompatible

runtime platforms as indicated by the shaded zones.

Integration Becomes a Constant Challenge

Applications built only with the automation of specific business processes in mind are

generally not designed to accommodate other interoperability requirements. Making

these types of applications share data at some later point results in a jungle of convo-

luted integration architectures held together mostly through point-to-point patchwork

(Figure 4.10) or requiring the introduction of large middleware layers.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.2 Problems Solved by Service-Orientation 81

The Need for Service-Orientation

After repeated generations of traditional distributed solutions, the severity of the previ-

ously described problems has been amplified. This is why service-orientation was con-

ceived. It very much represents an evolutionary state in the history of IT in that it

combines successful design elements of past approaches with new design elements that

leverage conceptual and technology innovation.

The consistent application of the eight design principles listed earlier results in the wide-

spread proliferation of the corresponding design characteristics:

• increased consistency in how functionality and data is represented

• reduced dependencies between units of solution logic

• reduced awareness of underlying solution logic design and implementation

details

• increased opportunities to use a piece of solution logic for multiple purposes

• increased opportunities to combine units of solution logic into different 

configurations

Figure 4.10

A vendor-diverse enterprise can introduce a variety of integration challenges, as expressed

by the little lightning bolts that highlight points of concern when trying to bridge propri-

etary environments.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



• increased behavioral predictability 

• increased availability and scalability

• increased awareness of available solution logic 

When these characteristics exist as real parts of implemented services, they establish a

common synergy. As a result, the complexion of an enterprise changes as the following

distinct qualities are consistently promoted:

Increased Amounts of Agnostic Solution Logic

Within a service-oriented solution, units of logic (services) encapsulate functionality not

specific to any one application or business process (Figure 4.11). These services are there-

fore classified as agnostic and reusable IT assets.

82 Chapter 4: Service-Orientation

Figure 4.11

Business processes are automated by a series of business process-specific services 

(top layer) that share a pool of business process-agnostic services (bottom layer). These

layers correspond to the task, entity, and utility service models described in Chapter 3.

Reduced Amounts of Application-Specific Logic

Increasing the amount of solution logic not specific to any one application or business

process decreases the amount of required application-specific logic (Figure 4.12). This

blurs the lines between standalone application environments by reducing the overall

quantity of standalone applications. (See also the Service-Orientation and the Concept of 

“Application” section later in this chapter.)

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.2 Problems Solved by Service-Orientation 83

Figure 4.12

Business Process A can be automated by either Application A or Service Composition A. The

delivery of Application A can result in a body of solution logic that is specific to and tailored

for the business process. Service Composition A would be designed to automate the process

with a combination of agnostic services and 40% of additional logic specific to the business

process.

Reduced Volume of Logic Overall

The overall quantity of solution logic is reduced because the same solution logic is

shared and reused to automate multiple business processes, as shown in Figure 4.13.

Figure 4.13

The quantity of solution logic shrinks as

an enterprise transitions toward a stan-

dardized service inventory comprised of

“normalized” services.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



84 Chapter 4: Service-Orientation

Figure 4.14

Services from different parts of a service inventory can be combined into new compositions. If

these services are designed to be intrinsically interoperable, the effort to assemble them into

new composition configurations is significantly reduced.

Inherent Interoperability

Common design characteristics consistently implemented result in solution logic that is

naturally aligned. When this carries over to the standardization of service contracts and

their underlying data models, a base level of automatic interoperability is achieved

across services, as illustrated in Figure 4.14. (See also the Service-Orientation and the 

Concept of “Integration” section later in this chapter.)

SUMMARY OF KEY POINTS

• The traditional silo-based approach to building applications has been suc-

cessful at providing tangible benefits and measurable returns on investment.

• This approach has also caused its share of problems, most notably an

increase in integration complexity and an increase in the size and administra-

tive burden of IT enterprises.

• Service-orientation establishes a design paradigm that leverages and builds

upon previous approaches and proposes a means of avoiding problems asso-

ciated with silo-based application delivery.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.3 Challenges Introduced by Service-Orientation 85

4.3 Challenges Introduced by Service-Orientation

As much as service-orientation can solve some of the more significant historical prob-

lems in IT, its application in the real world can make some serious impositions. It is nec-

essary to be aware of these challenges ahead of time because being prepared is key to

overcoming them.

Design Complexity

With a constant emphasis on reuse, a significant percentage of a service inventory can

ultimately be comprised of agnostic services capable of fulfilling requirements for mul-

tiple potential service consumer programs. 

Although this can establish a highly normalized and streamlined architecture, it can also

introduce an increased level of complexity for both the architecture as well as individ-

ual service designs. 

Examples include:

• increased performance requirements resulting from the increased reuse of agnostic

services

• reliability issues of services at peak concurrent usage times and availability issues

of services during off-hours

• single point of failure issues introduced by excessive reuse of agnostic services

(and that may require the need for redundant deployments to mitigate risks)

• increased demands on service hosting environments to accommodate autonomy-

related preferences

• service contract versioning issues and the impact of potentially redundant service

contracts

Design issues such as these can be addressed by a combination of sound technology

architecture design, modern vendor runtime platform technology, and the consistent

application of service-orientation design principles. Solving service reliability and per-

formance issues in particular are primary goals of those design principles more focused

on the underlying service logic, such as Service Autonomy, Service Statelessness, and

Service Composability.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



The Need for Design Standards

Design standards can be healthy for an enterprise in that they “pre-solve” problems by

making several decisions for architects and developers ahead of time, thereby increas-

ing the consistency and compatibility of solution designs. Their use is required in order

to realize the successful propagation of service-orientation.

Although it can be a straight-forward process to create these standards, incorporating

them into a (non-standardized) IT culture already set in its ways can be demanding to

say the least. The usage of design standards can introduce the need to enforce their com-

pliance, a policing role that can meet with resistance. Additionally, architects and devel-

opers sometimes feel that design standards inhibit their creativity and ability to

innovate.

A circumstance that tends to aid the large-scale realization of standardization is when

the SOA initiative is championed by an executive manager, such as a CIO. When an indi-

vidual or a governing body has the authority to essentially “lay down the law,” many of

these cultural issues resolve themselves more quickly. However, within organizations

based on peer-level departmental structures (which are more common in the public 

sector), the acceptance of design standards may require negotiation and compromise.

The best weapon for overcoming cultural resistance to design standards is communica-

tion and education. Those resisting standardization efforts are more likely to become

supporters after gaining an appreciation of the strategic significance and ultimate 

benefits of adopting and respecting the need for design standards.

Top-Down Requirements

A preferred strategy to delivering services is to first conceptualize a service inventory by

defining a blueprint of all planned services, their relationships, boundaries, and indi-

vidual service models. This approach is very much associated with a top-down delivery

strategy in that it can impose a significant amount of up-front analysis effort involving

many members of business analysis and technology architecture groups.

Though preferred, achieving a comprehensive blueprint prior to building services is

often not feasible. It is common for organizations to face budget and time constraints

and tactical priorities that simply won’t permit it. As a result, there are phased and iter-

ative delivery approaches that allow for services to be produced earlier on. These, how-

ever, often come with trade-offs in that they can require the service designs to be

revisited and revised at a later point. While this can introduce risks associated with 

86 Chapter 4: Service-Orientation

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.3 Challenges Introduced by Service-Orientation 87

the implementation of premature service designs, it is often considered an acceptable

compromise.

The principles of service-orientation can be applied to services on an individual basis,

allowing a reasonable degree of service-orientation to be achieved regardless of the

approach. However, the actual quality of the resulting service designs is typically tied

to how much of the top-down analysis work was completed prior to their delivery. 

Counter-Agile Service Delivery in Support of Agile Solution Delivery

Irrespective of the potential top-down efforts needed for some SOA projects, the addi-

tional design considerations required to implement a meaningful measure of each of the

eight design principles increases both the overall time and cost to deliver service logic.

This may appear contrary to the attention SOA has received for its ability to increase

agility. To achieve the state of organizational agility described in Chapter 3 requires that

service-orientation already be successfully implemented. This is what establishes an

environment in which the delivery of solutions is much more agile.

However, given that it takes more initial effort to design and build services than it does

to build a corresponding amount of logic that is not service-oriented, the process of

delivering services in support of SOA can actually be counter-agile. This can cause issues

for an organization that has tactical requirements or needs to be responsive while build-

ing a service inventory. 

BEST PRACTICE

It is recommended that, at minimum, a high-level service inventory blueprint always be

defined prior to creating physical service contracts. This establishes an important

“broader” perspective in support of service-oriented analysis and service modeling

processes and, ultimately, results in stronger and more durable service designs.

BEST PRACTICE

An effective approach, when sufficient resources are available, is to allow SOA initiatives

to be delivered alongside existing legacy development and maintenance projects. This

way, tactical requirements can continue to be fulfilled by traditional applications while the

enterprise works toward a phased transition toward service-oriented computing. 

Appendix B provides additional coverage of SOA delivery strategies that address tacti-

cal versus strategic service delivery requirements.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



Governance Demands

The eventual existence of one or more service inventories represents the ultimate deliv-

erable of the typical large-scale SOA initiative. A service inventory establishes a power-

ful reserve of standardized solution logic, a high percentage of which will ideally be

classified as agnostic or reusable. Subsequent to their implementation, though, the man-

agement and evolution of these agnostic services can be responsible for some of the most

profound changes imposed by service-orientation. 

In the past, a standalone application was typically developed by a single project team.

Members of this team often ended up remaining “attached” to the application for sub-

sequent upgrades, maintenance, and extensions. This ownership model worked because

the application’s overall purpose and scope remained focused on the business tasks it

was originally built to automate. 

The body of solution logic represented by agnostic services, however, is intentionally

positioned to not belong to any one business process. Although these services may have

been delivered by a project team, that same team may not continue to own the service

logic as it gets repeatedly utilized by other solutions, processes, and compositions. 

Therefore, a special governance structure is required. This can introduce new resources,

roles, processes, and even new groups or departments. Ultimately, when these issues are

under control and the IT environment itself has successfully adapted to the required

changes, the many benefits associated with this new computing platform are there for

the taking. However, the process of moving to this new governance model can challenge

traditional approaches and demand time, expense, and a great deal of patience.

SUMMARY OF KEY POINTS

• Applying service-orientation on a broad scale can introduce increased design

complexity and the need for a consistent level of standardization.

• The construction of services can be expensive and time-consuming, introduc-

ing a more burdensome project delivery lifecycle, further compounded by

some of the common top-down analysis requirements that may need to be in

place before services can be built.

• Service inventory governance requirements can impose significant changes

that can shake up the organizational structure of an IT department. 

88 Chapter 4: Service-Orientation

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.4 Additional Considerations 89

4.4 Additional Considerations

To supplement the benefits and challenges just covered, this section discusses some fur-

ther aspects of service-orientation.

It Is Not a Revolutionary Paradigm

Service-orientation is not a brand new paradigm that aims to replace all that preceded

it. It, in fact, incorporates and builds upon proven and successful elements from past

paradigms and combines these with design approaches shaped to leverage recent tech-

nology innovations. 

This is why we do not refer to SOA as a revolutionary model in the history of IT. It is sim-

ply the next stage in an evolutionary cycle that began with the application of modular-

ity on a small scale (by organizing simple programming routines into shared modules

for example) and has now spread to the potential modularization of the enterprise.

Enterprise-wide Standardization Is Not Required

There is a common misperception that unless design standardization is achieved glob-

ally throughout the entire enterprise, SOA will not succeed. Although design standard-

ization is a critical success factor for SOA projects that is ideally achieved across an

enterprise, it only needs to be realized to a meaningful extent for service-orientation to

result in strategic benefit.

For example, service-orientation emphasizes the need for standardizing service data

models to avoid unnecessary data transformation and other problematic issues that can

compromise interoperability. The extent to which data model standardization is

achieved determines the extent to which these problems will be avoided. 

The goal is not always to eliminate problems entirely because that can be an unrealistic

objective, especially in larger enterprises. Therefore, the goal is sometimes to just mini-

mize problems by taking special considerations into account during service design. 

In support of this approach, design patterns exist for organizing the division of an enter-

prise into more manageable domains. Data standardization is generally more easily

attained within each domain, and transformation is then only required when exchang-

ing data across these domains. Even though this does not achieve a global data model,

it can still help establish a very meaningful level of interoperability.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



Reuse Is Not an Absolute Requirement

Increasing reusability of solution logic is a fundamental goal of service-orientation, and

reuse is clearly one of the most associated benefits of SOA. As a result, organizations that

have had limited success with past reuse initiatives, or with concerns that significant

amounts of reuse cannot be achieved within their enterprise, are often hesitant about

SOA in general.

While reuse, especially over time, can be one of the most rewarding parts of investing in

SOA, it is not the sole primary benefit. Perhaps even more fundamental to service-

orientation than promoting reuse is fostering interoperability. Enabling an enterprise to

connect previously disparate systems or to make interconnectivity an intrinsic quality of

new solution logic is extremely powerful. 

You could ignore the principle of Service Reusability in service designs and still achieve

significant returns on investment based solely on raising the level of enterprise-wide

interoperability.

90 Chapter 4: Service-Orientation

NOTE

One could argue that reuse and interoperability are very closely related in

that if two services are interoperable, there is always the opportunity for

reuse. However, traditional perspectives of reusable solution logic focus

on the nature of the logic itself. A service that is designed to be specifi-

cally agnostic to business processes and cross-cutting to address multi-

ple concerns will have a particular functional context associated with it.

Therefore, reuse can be seen as a separate design characteristic that

relies and builds upon interoperability. See Chapter 9 for more details.

SUMMARY OF KEY POINTS

• Service-orientation has deep roots in several past computing platforms and

design approaches, and is therefore not considered a revolutionary design

paradigm.

• Global standardization within an enterprise is not a requirement for creating

service-oriented enterprises because individual service inventories can be

established (and separately standardized) within different enterprise domains.

• Although fundamental to much of service-orientation, if reusability were to be

omitted as a design characteristic, significant interoperability-related benefit

would still be attainable.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.5 Effects of Service-Orientation on the Enterprise 91

4.5 Effects of Service-Orientation on the Enterprise

There are good reasons to have high expectations from the service-orientation para-

digm. But, at the same time, there is much to learn and understand before it can be suc-

cessfully applied. The following sections explore some of the more common examples.

Service-Orientation and the Concept of “Application”

Having just stated that reuse is not an absolute requirement, it is important to acknowl-

edge the fact that service-orientation does place an unprecedented emphasis on reuse.

By establishing a service inventory with a high percentage of reusable and agnostic serv-

ices, we are now positioning those services as the primary (or only) means by which the

solution logic they represent can and should be accessed. 

As a result, we make a very deliberate move away from the silos in which applications

previously existed. Because we want to share reusable logic whenever possible, we auto-

mate existing, new, and augmented business processes through service composition.

This results in a shift where more and more business requirements are fulfilled not by

building or extending applications, but by simply composing existing services into new

composition configurations.

When compositions become more common, the traditional concept of an application, a

system, or a solution actually begins to fade, along with the silos that contain them.

Applications no longer consist of self-contained bodies of programming logic responsi-

ble for automating a specific set of tasks (Figure 4.15). What was an application is now

just another service composition. And it’s a composition made up of services that very

likely participate in other compositions (Figure 4.16).

Figure 4.15

The traditional application, delivered to automate specific business process logic.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



An application in this environment loses its individuality. One could argue that a serv-

ice-oriented application actually does not exist because it is, in fact, just one of many

service compositions. However, upon closer reflection, we can see that some of the serv-

ices are actually not business process-agnostic. The task service, for example, intention-

ally represents logic that is dedicated to the automation of just one business task and

therefore is not necessarily reusable.

What this indicates is that non-agnostic services can still be associated with the notion

of an application. However, within service-oriented computing, the meaning of this

term can change to reflect the fact that a potentially large portion of the application logic

is no longer exclusive to the application.

Service-Orientation and the Concept of “Integration”

When we revisit the idea of a service inventory consisting of services that have, as per

our service-orientation principles, been shaped into standardized and (for the most part)

reusable units of solution logic, we can see that this can challenge the traditional per-

ception of “integration.”

In the past, integrating something implied connecting two or more applications or pro-

grams that may or may not have been compatible (Figure 4.17). Perhaps they were based

on different technology platforms or maybe they were never designed to connect with

anything outside of their own internal boundary. The increasing need to hook up dis-

parate pieces of software to establish a reliable level of data exchange is what turned

integration into an important, high profile part of the IT industry.

92 Chapter 4: Service-Orientation

Figure 4.16

The service composition, intended to fulfill the role of the traditional application by leveraging agnostic and non-

agnostic services from a service inventory. This essentially establishes a “composite application.”

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.5 Effects of Service-Orientation on the Enterprise 93

Services designed to be “intrinsically interoperable” are built with the full awareness

that they will need to interact with a potentially large range of service consumers, most

of which will be unknown at the time of their initial delivery. If a significant part of our

enterprise solution logic is represented by an inventory of intrinsically interoperable

services, it empowers us with the freedom to mix and match these services into infinite

composition configurations to fulfill whatever automation requirements come our way.

As a result, the concept of integration begins to fade. Exchanging data between different

units of solution logic becomes a natural and secondary design characteristic (Figure

4.18). Again, though, this is something that can only transpire when a substantial per-

centage of an organization’s solution logic is represented by a quality service inventory.

Figure 4.17

The traditional integration architecture, comprised of two or more applications

connected in different ways to fulfill a new set of automation requirements (as

dictated by the new Business Process G).

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



While working toward achieving this environment, there will likely be many require-

ments for traditional integration between existing legacy systems and also between

legacy systems and these services. 

94 Chapter 4: Service-Orientation

Figure 4.18

A new combination of services is composed together to fulfill the role of

traditional integrated applications.

The Service Composition

Applications, integrated applications, solutions, systems, all of these terms and what

they have traditionally represented can be directly associated with the service composi-

tion (Figure 4.19). However, given the fact that many SOA implementations consist of a

mixture of legacy environments and services, these terms are sure to survive for quite

some time. 

In fact, as SOA transition initiatives continue to progress within an enterprise, it can be

helpful to make a clear distinction between a traditional application (one which may

reside alongside an SOA implementation or which may be actually encapsulated by a

service) and the service compositions that eventually become more commonplace.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.5 Effects of Service-Orientation on the Enterprise 95

Application, Integration, and Enterprise Architectures

Because applications have existed for as long as IT, when technology architecture as a

profession and perspective within the enterprise came about, it made perfect sense to

have separate architectural views dedicated to individual applications, integrated appli-

cations, and the enterprise as a whole.

When standardizing on service-orientation, the manner in which we document technol-

ogy architecture is also in for a change. The enterprise-level perspective becomes pre-

dominant as it represents a master view of the service inventory. It can still encompass

the traditional parts of a formal architecture, including conceptual views, physical

views, and supporting technologies and governance platforms—but all these views are

likely to now become associated with the service inventory.

A new type of technical specification that gains prominence in service-oriented enter-

prise initiatives is the service composition architecture. Even though we talk about the sim-

plicity of combining services into new composition configurations on demand, it is by

no means an easy process. It is a design exercise that requires the detailed documenta-

tion of the planned composition architecture.

For example, each service needs to be assessed as to its competency to fulfill its role as a

composition member, and foreseeable service activity scenarios need to be mapped out.

Figure 4.19

A service-oriented solution, application, or system is the equiva-

lent of a service composition. If we were to build an enterprise-

wide SOA from the ground up, it would likely be comprised of

numerous service compositions capable of fulfilling the traditional

roles associated with these terms.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



Message designs, messaging routes, exception handling, cross-service transactions,

policies, and many more considerations go into making a composition capable of

automating its designated business process. 

96 Chapter 4: Service-Orientation

SUMMARY OF KEY POINTS

• The traditional concept of an application can change as more agnostic 

services become established parts of the enterprise. 

• The traditional concept of integration can change as the proliferation of 

standardized, intrinsic interoperable services increases.

• Architectural views of the enterprise shift in response to the adoption of 

service-orientation. Principally, the enterprise perspective becomes 

increasingly prominent.

4.6 Origins and Influences of Service-Orientation

It is often said that the best way to understand something is to gain knowledge of its his-

tory. Service-orientation, by no means, is a design paradigm that just came out of

nowhere. It is very much a representation of the evolution of IT and therefore has many

BEST PRACTICE

Although the structure and content of traditional application architecture specifications

are augmented when documenting composition architectures, there can still be a natural

tendency to refer to these documents as architecture specifications for applications. 

While an organization is undergoing a transition toward SOA, it can be helpful to make a

clear distinction between an application consisting of a service composition and tradi-

tional, standalone or legacy applications. 

One approach is to consistently qualify the term “application.” For example, it can be

prefixed with “service-oriented,” “composite,” “standalone,” or “legacy.” Another option

is to simply limit the use of the term “application” to refer to non-service-composed solu-

tions only. 

Furthermore, a composed service encapsulating a legacy application can be docu-

mented in separate specifications: a composition architecture specification that identifies

the service and points to an application architecture specification that defines the corre-

sponding application.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.6 Origins and Influences of Service-Orientation 97

roots in past paradigms and technologies (Figure 4.20). At the same time, it is still in a

state of evolution itself and therefore remains subject to influences from on-going trends

and movements.

Figure 4.20

The primary influences of service-orientation also highlight its many origins.

The sections that follow describe some of the more prominent origins and thereby help

clarify how service-orientation can relate to and even help further some of the goals

from past paradigms.

Object-Orientation

In the 1990s the IT community embraced a design philosophy that would lead the way

in defining how distributed solutions were to be built. This paradigm was object-orien-

tation, and it came with its own set of principles, the application of which helped ensure

consistency across numerous environments. These principles defined a specific type of

relationship between units of solution logic classified as objects, which resulted in a pre-

dictable set of dynamics that ran through entire solutions.

Service-orientation is frequently compared to object-orientation, and rightly so. The

principles and patterns behind object-oriented analysis and design represent one of the

most significant sources of inspiration for this paradigm.

In fact, a subset of service-orientation principles (Service Reusability, Service Abstrac-

tion, and Service Composability, for example) can be traced back to object-oriented

counterparts. What distinguishes service-orientation, though, are the parts of the object-

oriented school of thought that were left out and the other principles that were added.

See Chapter 14 for a comparative analysis of principles and concepts associated with

these two design approaches.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



Web Services 

Even though service-orientation as a paradigm and SOA as a technology architecture are

each implementation-neutral, their association with Web services has become common-

place—so much so that the primary SOA vendors have shaped their respective plat-

forms around the utilization of Web services technology.

Although service-orientation remains a fully abstract paradigm, it is one that has his-

torically been influenced by the SOA platforms and roadmaps produced by these ven-

dors. As a result, the Web services framework has influenced and promoted several

service-orientation principles, including Service Abstraction, Service Loose Coupling,

and Service Composability.

Business Process Management (BPM) 

BPM places a significant emphasis on business processes within the enterprise both in

terms of streamlining process logic to improve efficiency and also to establish processes

that are adaptable and extensible so that they can be augmented in response to business

change.

The business process layer represents a core part of any service-oriented architecture.

From a composition perspective, it usually assumes the role of the parent service com-

position controller. The advent of orchestration technology reaffirmed this role from an

implementation perspective.

A primary goal of service-orientation is to establish a highly agile automation environ-

ment fully capable of adapting to change. This goal can be realized by abstracting busi-

ness process logic into its own layer, thereby alleviating other services from having to

repeatedly embed process logic. 

While service-orientation itself is not as concerned with business process reengineering,

it fully supports process optimization as a primary source of change for which services

can be recomposed.

Enterprise Application Integration (EAI) 

Integration became a primary focal point in the late 90’s, and many organizations were

ill prepared for it. Numerous systems were built with little thought given to how data

could be shared outside of the system boundary. As a result, point-to-point integration

98 Chapter 4: Service-Orientation

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S



4.6 Origins and Influences of Service-Orientation 99

channels were often created when data sharing requirements emerged. This led to well

known problems associated with a lack of stability, extensibility, and inadequate inter-

operability frameworks.

EAI platforms introduced middleware that allowed for the abstraction of proprietary

applications through the use of adapters, brokers, and orchestration engines. The result-

ing integration architectures were, in fact, more robust and extensible. However, they

also became notorious for being overwhelmingly complex and expensive, as well as

requiring long-term commitments to the middleware vendor’s platform and roadmap.

The advent of the open Web services framework and its ability to fully abstract propri-

etary technology changed the face of integration middleware. Vendor ties could be bro-

ken by investing in mobile services as opposed to proprietary platforms, and

organizations gained more control over the evolution of their integration architectures. 

Several innovations that became popularized during the EAI era were recognized as

being useful to the overall goals associated with building SOA using Web services. One

example is the broker component, which allows for services using different schemas

representing the same type of data to still communicate through runtime transforma-

tion. The other is the orchestration engine, which can actually be positioned to represent

an entire service layer within larger SOA implementations. These parts of the EAI 

platform support several service-orientation principles, including Service Abstraction,

Service Statelessness, Service Loose Coupling, and Service Composability.

Aspect-Oriented Programming (AOP)

A primary goal of AOP is to approach the separation of concerns with the intent of iden-

tifying specific concerns that are common to multiple applications or automation sce-

narios. These concerns are then classified as “cross-cutting,” and the corresponding

solution logic developed for cross-cutting concerns becomes naturally reusable.

Aspect-orientation emerged from object-orientation by building on the original goals of

establishing reusable objects. Although not a primary influential factor of service-orien-

tation, AOP does demonstrate a common goal in emphasizing the importance of invest-

ing in units of solution logic that are agnostic to business processes and applications and

therefore highly reusable. It further promotes role-based development, allowing devel-

opers with different areas of expertise to collaborate.

SOA Principles of Service Design, First Edition, by Thomas Erl. Published by Prentice Hall. Copyright © 2008 by Pearson Education, Inc.

G

U

N

N

,

 

G

E

N

N

I

S

E

 

1

4

1

7

T

S


